首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
• Pt/CZL exhibits the optimum catalytic performance for HC and NOx elimination. • The strong PM-Ce interaction favors the oxygen mobility and DOSC. • Pd/CZL shows higher catalytic activity for CO conversion due to more Olatt species. • Great oxygen mobility at high temperature broadens the dynamic operation window. • The relationship between DOSC and catalytic performance is revealed. The physicochemical properties of Pt-, Pd- and Rh- loaded (Ce,Zr,La)O2 (shorted for CZL) catalysts before/after aging treatment were systematically characterized by various techniques to illustrate the relationship of the dynamic oxygen storage/release capacity and redox ability with their catalytic performances for HC, NOx and CO conversions. Pt/CZL catalyst exhibits the optimum catalytic performance for HC and NOx elimination, which mainly contribute to its excellent redox ability and dynamic oxygen storage/release capacity (DOSC) at lower temperature due to the stronger PM (precious metals)-support interaction. However, the worse stability of Pt-O-Ce species and volatile Pt oxides easily result in the dramatical decline in catalytic activity after aging. Pd/CZL shows higher catalytic activity for CO conversion by reason of more Olatt species as the active oxygen for CO oxidation reaction. Rh/CZL catalyst displays the widest dynamic operation window for NOx elimination as a result of greater oxygen mobility at high temperature, and the ability to retain more Rh-O-Ce species after calcined at 1100°C effectively restrains sintering of active RhOx species, improving the thermal stability of Rh/CZL catalyst.  相似文献   

2.
• The calculation process and algorithm of response surface model (RSM) were enhanced. • The prediction errors of RSM in the margin and transition areas were greatly reduced. • The enhanced RSM was able to analyze O3-NOx-VOC sensitivity in real-time. • The O3 formations were mainly sensitive to VOC, for the two case study regions. Quantification of the nonlinearities between ambient ozone (O3) and the emissions of nitrogen oxides (NOx) and volatile organic compound (VOC) is a prerequisite for an effective O3 control strategy. An Enhanced polynomial functions Response Surface Model (Epf-RSM) with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model (ERSM) system. The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes. Several comparisons between Epf-RSM and pf-ERSM (polynomial functions based ERSM) were performed using out-of-sample validation, together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams. The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to over-fitting in the margin areas and high biases in the transition areas. The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results. The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January, April, and October, while more NOx-sensitive in July.  相似文献   

3.
• CeO2 doping significantly improved low-temperature NH3-SCR activity on FeTiOx. • The crystallinity of FeTiOx was decreased dramatically after CeO2 doping. • Unique Ce-O-Fe structure in FeCe0.2TiOx accounted for its superior redox property. • Facile activation of NH3 to-NH2 on FeCe0.2TiOx promoted the DeNOx efficiency. FeTiOx has been recognized as an environmental-friendly and cost-effective catalyst for selective catalytic reduction (SCR) of NOx with NH3. Aimed at further improving the low-temperature DeNOx efficiency of FeTiOx catalyst, a simple strategy of CeO2 doping was proposed. The low-temperature (<250℃) NH3-SCR activity of FeTiOx catalyst could be dramatically enhanced by CeO2 doping, and the optimal composition of the catalyst was confirmed as FeCe0.2TiOx, which performed a NOx conversion of 90% at ca. 200℃. According to X-ray diffraction (XRD), Raman spectra and X-ray absorption fine structure spectroscopy (XAFS) analysis, FeCe0.2TiOx showed low crystallinity, with Fe and Ce species well mixed with each other. Based on the fitting results of extended X-ray absorption fine structure (EXAFS), a unique Ce-O-Fe structure was formed in FeCe0.2TiOx catalyst. The well improved specific surface area and the newly formed Ce-O-Fe structure dramatically contributed to the improvement of the redox property of FeCe0.2TiOx catalyst, which was well confirmed by H2-temperature-programmed reduction (H2-TPR) and in situ XAFS experiments. Such enhanced redox capability could benefit the activation of NO and NH3 at low temperatures for NOx removal. The detailed reaction mechanism study further suggested that the facile oxidative dehydrogenation of NH3 to highly reactive-NH2 played a key role in enhancing the low-temperature NH3-SCR performance of FeCe0.2TiOx catalyst.  相似文献   

4.
• Activated carbon was proposed to be an efficient accelerant for molded red mud catalyst. • The surface acidity and reducibility were highly improved, as well as the pore structure. • The enrichment of the surface Fe2+ and the adsorbed oxygen account for the improvement. Our previous study proved that the acid-pretreatment process could efficiently activate red mud (RM) for the selective catalytic reduction (SCR) of NOx. However, in terms of the molding process, which is the key step determining whether it can be applied in large-scale industrial, the surface acidity and reducibility of catalyst always decreased dramatically, and part of surface area and pore structure were lost. In this study, we prepared monolithic honeycomb red mud (MHRM) catalysts with activated carbon (AC) as an accelerant and investigated the effect of AC on the MHRM. The results showed that the MHRM with 3 wt.% of AC (MHRM-AC3) exhibited the best SCR performance, and kept more than 80% NOx conversion in the range of 325°C–400°C. Compared with the MHRM, MHRM-AC1, and HMRM-AC5, the MHRM-AC3 has more mesoporous and macroporous structures, which can provide more adsorption active sites. The AC significantly improved NH3 adsorption and surface reducibility, which was mainly due to the increase of the surface acid sites (especially the Brönsted acid sites), the concentration of Fe(II), and the surface adsorbed oxygen. The presence of more Fe(II) enriched the surface oxygen vacancies, as well as the surface adsorbed oxygen, due to the charge imbalance and unsaturated chemical bond. And surface adsorbed oxygen exhibited more active than lattice oxygen owing to its higher mobility, which was conducive to NOx reduction in the SCR reaction.  相似文献   

5.
• A novel Z-scheme Si-SnO2-TiOx with SnO2 as electron mediator is first constructed. • Transparent and conductive SnO2 can pass light through and promote charge transport. • VO from SnO2 and TiOx improve photoelectrochemical performances. • Efficient photocatalytic degradations originate from the Z scheme construction. Z-scheme photocatalysts, with strong redox ability, have a great potential for pollutants degradation. However, it is challenging to construct efficient Z-scheme photocatalysts because of their poor interfacial charge separation. Herein, by employing transparent and conductive SnO2 as electron mediator to pass light through and promote interfacial charge transportation, a novel Z-scheme photocatalyst Si-SnO2-TiOx (1<x<2) was constructed. The Z-scheme photocatalyst displayed an order of magnitude higher photocurrent density and a 4-fold increase in open-circuit potential compared to those of Si. Moreover, the onset potential shifted negatively for approximately 2.2 V. Benefiting from these advantages, this Z-scheme Si-SnO2-TiOx exhibited efficient photocatalytic performance toward phenol degradation and mineralization. 75% of the phenol was degraded without bias potential and 70% of the TOC was removed during phenol degradation. Other typical pollutants such as bisphenol A and atrazine could also be degraded without bias potential. Introducing a transparent and conductive electron mediator to construct Z-scheme photocatalyst gives a new sight to the improvement of photocatalytic performance in Z scheme.  相似文献   

6.
• The optimum SCR activity was realized by tuning the acid pretreatment. • Optimized catalysts showed NOx conversion above 90%. • The NH3 and NO adsorption capacity of Al-O3-Fe is stronger than Fe-O3-Fe. • The formation of almandine consumes Fe3+ and Al3+ and weakens their interaction. Red mud (RM), as an alkaline waste, was recently proved to be a promising substitute for the SCR catalyst. Dealkalization could improve the acidity and reducibility of red mud, which were critical for SCR reaction. However, the dealkalization effect depended on the reaction between acid solution and red mud. In this study, we realized the directional control of the chemical state of active sites through tuning the acid pretreatment (dealkalization) process. The pretreatment endpoint was controlled at pH values of 3–5 with diluted nitric acid. When the pH values of red mud were 3 and 5 (CRM-3 and CRM-5), activated catalysts showed NOx conversion above 90% at 275°C–475°C. The high initial reaction rate, Ce3+/(Ce3+ + Ce4+) ratio, and surface acidity accounted for the excellent SCR performance of CRM-5 catalyst. Meanwhile, more Fe3+ on the CRM-3 surface improved the NH3 adsorption. There was a strong interaction between Al and Fe in both CRM-5 and CRM-3 catalysts. DFT results showed that the adsorption capacity of the Al-O3-Fe for NH3 and NO is stronger than that of Fe-O3-Fe, which enhanced the NOx conversion of the catalyst. However, the almandine was formed in CRM-4, consumed part of Fe3+ and Al3+, and the interaction between Al and Fe was weakened. Also, deposited almandine on the catalyst surface covered the active sites, thus leading to lower NH3-SCR activity.  相似文献   

7.
•CeOx/GF-EP process had the better degradation efficiency than GF-EP process. •CeOx/GF-EP process had the flexible application in the pH range from 5.0 to 9.0. •CeOx could enhance surface hydrophilicity and reduce the charge-transfer resistance. •The interfacial electron transfer process was revealed. E-peroxone (EP) was one of the most attractive AOPs for removing refractory organic compounds from water, but the high energy consumption for in situ generating H2O2 and its low reaction efficiency for activating O3 under acidic conditions made the obstacles for its practical application. In this study, cerium oxide was loaded on the surface of graphite felt (GF) by the hydrothermal method to construct the efficient electrode (CeOx/GF) for mineralizing carbamazepine (CBZ) via EP process. CeOx/GF was an efficient cathode, which led to 69.4% TOC removal in CeOx/GF-EP process with current intensity of 10 mA in 60 min. Moreover, CeOx/GF had the flexible application in the pH range from 5.0 to 9.0, TOC removal had no obvious decline with decrease of pH. Comparative characterizations showed that CeOx could enhance surface hydrophilicity and reduce the charge-transfer resistance of GF. About 5.4 mg/L H2O2 generated in CeOx/GF-EP process, which was 2.1 times as that in GF-EP process. The greater ozone utility was also found in CeOx/GF-EP process. More O3 was activated into hydroxyl radicals, which accounted for the mineralization of CBZ. An interfacial electron transfer process was revealed, which involved the function of oxygen vacancies and Ce3+/Ce4+ redox cycle. CeOx/GF had the good recycling property in fifth times’ use.  相似文献   

8.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

9.
• A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.  相似文献   

10.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

11.
• A novel conductive carbon black modified lead dioxide electrode is synthesized. • The modified PbO2 electrode exhibits enhanced electrochemical performances. • BBD method could predict optimal experiment conditions accurately and reliably. • The modified electrode possesses outstanding reusability and safety. The secondary pollution caused by modification of an electrode due to doping of harmful materials has long been a big concern. In this study, an environmentally friendly material, conductive carbon black, was adopted for modification of lead dioxide electrode (PbO2). It was observed that the as-prepared conductive carbon black modified electrode (C-PbO2) exhibited an enhanced electrocatalytical performance and more stable structure than a pristine PbO2 electrode, and the removal efficiency of metronidazole (MNZ) and COD by a 1.0% C-PbO2 electrode at optimal conditions was increased by 24.66% and 7.01%, respectively. Results revealed that the electrochemical degradation of MNZ wastewater followed pseudo-first-order kinetics. This intimates that the presence of conductive carbon black could improve the current efficiency, promote the generation of hydroxyl radicals, and accelerate the removal of MNZ through oxidation. In addition, MNZ degradation pathways through a C-PbO2 electrode were proposed based on the identified intermediates. To promote the electrode to treat antibiotic wastewater, optimal experimental conditions were predicted through the Box-Behnken design (BBD) method. The results of this study suggest that a C-PbO2 electrode may represent a promising functional material to pretreat antibiotic wastewaters.  相似文献   

12.
13.
• A high-performance electrode was prepared with super-aligned carbon nanotubes. • SACNT/AC electrode achieved a ~100% increase in desalination capacity and rate. • SACNT/AC electrode achieved a ~26% increase in charge efficiency. • CUF process with SACNT/AC achieved an up to 2.43-fold fouling reduction. • SACNT/AC imparts overall improved water purification efficiency. The practical application of the capacitive deionization (CDI) enhanced ultrafiltration (CUF) technology is hampered due to low performance of electrodes. The current study demonstrated a novel super-aligned carbon nanotube (SACNT)/activated carbon (AC) composite electrode, which was prepared through coating AC on a cross-stacked SACNT film. The desalination capability and water purification performance of the prepared electrode were systematically investigated at different applied voltages (0.8–1.2 V) with a CDI system and a CUF system, respectively. In the CDI tests, as compared with the control AC electrode, the SACNT/AC electrode achieved an approximately 100% increase in both maximum salt adsorption capacity and average salt adsorption rate under all the applied voltage conditions, demonstrating a superior desalination capability. Meanwhile, a conspicuous increase by an average of ~26% in charge efficiency was also achieved at all the voltages. In the CUF tests, as compared with the control run at 0 V, the treatment runs at 0.8, 1.0, and 1.2 V achieved a 2.40-fold, 2.08-fold, and 2.43-fold reduction in membrane fouling (calculated according to the final transmembrane pressure (TMP) data at the end of every purification stage), respectively. The average TMP increasing rates at 0.8, 1.0, and 1.2 V were also roughly two times smaller than that at 0 V, indicating a dramatical reduction of membrane fouling. The SACNT/AC electrode also maintained its superior desalination capability in the CUF process, resulting in an overall improved water purification efficiency.  相似文献   

14.
• K+ hinder the structural degradation of Cu/SAPO-34 under humid condition<100°C. • K+ on Cu/SAPO-34 brings lower acidity and inferior SCR activity at high temperature. • Fe/Beta was used to compensate the low activity of Cu/SAPO-34 at high temperature. • The hybrid catalysts with KCu/SAPO-34 and Fe/Beta show a great potential for using. K ions were introduced onto Cu/SAPO-34 catalysts via the ion-exchange process in order to improve their stability under low-temperature hydrothermal aging. The changes in structure and copper-species contents of these catalysts upon hydrothermal aging were probed in order to investigate their effects on selective catalytic reduction (SCR) activity. For the fresh Cu/SAPO-34 catalysts, K ions had little influence on the chabazite framework but effected their acidities by exchanging with acid sites. After hydrothermal aging, the structural integrity and amount of active sites decreased on pure Cu/SAPO-34. While the K-loaded catalysts showed improved chabazite structure, acidity, and active site conservation with increasing K loading. However, although the 0.7 wt% K catalyst maintained the same crystallinity, active site abundance, and low-temperature SCR activity as the fresh catalyst upon aging, an apparent decrease in SCR activity at high temperature was observed because of the inevitable decrease in the number of Brönsted acid sites. To compensate for the activity disadvantage of K-loaded Cu/SAPO-34 at high temperature, Fe/Beta catalysts were co-employed with K-loaded Cu/SAPO-34, and a wide active temperature window of SCR activity was obtained. Thus, our study reveals that a combined system comprising Fe/Beta and K-loaded Cu/SAPO-34 catalysts shows promise for the elimination of NOx in real-world applications.  相似文献   

15.
• Cu2O NPs/H2O2 Fenton process was intensified by membrane dispersion. • DMAc removal was enhanced to 98% for initial DMAc of 14000 mg/L. • Analyzed time-resolved degradation pathway of DMAc under ·OH attack. High-concentration industrial wastewater containing N,N-dimethylacetamide (DMAc) from polymeric membrane manufacturer was degraded in Cu2O NPs/H2O2 Fenton process. In the membrane-assisted Fenton process DMAc removal rate was up to 98% with 120 min which was increased by 23% over the batch reactor. It was found that ·OH quench time was extended by 20 min and the maximum ·OH productivity was notably 88.7% higher at 40 min. The degradation reaction rate constant was enhanced by 2.2 times with membrane dispersion (k = 0.0349 min1). DMAc initial concentration (C0) and H2O2 flux (Jp) had major influence on mass transfer and kinetics, meanwhile, membrane pore size (rp) and length (Lm) also affected the reaction rate. The intensified radical yield, fast mass transfer and nanoparticles high activity all contributed to improve pollutant degradation efficiency. Time-resolved DMAc degradation pathway was analyzed as hydroxylation, demethylation and oxidation leading to the final products of CO2, H2O and NO3 (rather than NH3 from biodegradation). Continuous process was operated in the dual-membrane configuration with in situ reaction and separation. After five cycling tests, DMAc removal was all above 95% for the initial [DMAc]0 = 14,000 mg/L in wastewater and stability of the catalyst and the membrane maintained well.  相似文献   

16.
• There was significant absorption of heavy metals by the pepper in contaminated soils. • The target hazard quotient (THQ) indices followed the order of Pb>Zn>>Cd » Ni. • Relationships exist between contaminated plants and electromagnetic wave. • PCA and random search can select the main spectra and predict THQ for each element. Given the tendency of heavy metals to accumulate in soil and plants, the purpose of this study was to determine the contamination levels of Cd, Ni, Pb, and Zn on peppers (leaves and fruit) grown in contaminated soils in industrial centers. For this purpose, we measured the uptake of the four heavy metals by peppers grown in the heavy metal contaminated soils throughout the four growth stages: two-leaf, growth, flowering, and fruiting, and calculated various vegetation indices to evaluate the heavy metal contamination potentials. Electromagnetic waves were also applied for analyzing the responses of the target plants to various heavy metals. Based on the relevant spectral bands identified by principal component analysis (PCA) and random search methods, a regression method was then employed to determine the most optimal spectral bands for estimating the target hazard quotient (THQ). The THQ was found to be the highest in the plants contaminated by Pb (THQ= 62) and Zn (THQ= 5.07). The results of PCA and random search indicated that the spectra at the bands of b570, b650, and b760 for Pb, b400 and b1030 for Ni, b400 and b880 for Cd, and b560, b910, and b1050 for Zn were the most optimal spectra for assessing THQ. Therefore, in future studies, instead of examining the amount of heavy metals in plants by chemical analysis in the laboratory, the responses of the plants to the electromagnetic waves in the identified bands can be readily investigated in the field based on the established correlations.  相似文献   

17.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

18.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

19.
• Graphite bipolar electrodes act as an appropriate bed for the CDI process. • Activated carbon Coating improves the application of the electrodes. • CDI is an environmentally friendly method to apply for brackish water. • Initial concentration is the most important parameter in the CDI method. • CDI process in a batch-mode setup needs more development. This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination. Reductions of cost and energy compared with conventional desalination methods are the significant advantages of this approach. In this research, experiments were performed with a pair of graphite bipolar electrodes that were coated with a one-gram activated carbon solution. After completing preliminary tests, the impacts of four parameters on electrical conductivity reduction, including (1) the initial concentration of feed solution, (2) the duration of the tests, (3) the applied voltage, and (4) the pH of the solution, were examined. The results show that the maximum efficiency of electrical conductivity reduction in this laboratory-scale reactor is about 55%. Furthermore, the effects of the initial concentration of feed solution are more significant than the other parameters. Thus, using the capacitive deionization method for water desalination with low and moderate salt concentrations (i.e., brackish water) is proposed as an affordable method. Compared with conventional desalination methods, capacitive deionization is not only more efficient but also potentially more environmentally friendly.  相似文献   

20.
• AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs. • Coupled DNRA/anammox and NOx-DAMO/anammox/comammox processes are demonstrated. • Substrate level, SRT and stressors determine the niches of overlooked microbes. • Applications of overlooked microbes in enhancing nitrogen removal are promising. Nitrogen-cycling microorganisms play key roles at the intersection of microbiology and wastewater engineering. In addition to the well-studied ammonia oxidizing bacteria, nitrite oxidizing bacteria, heterotrophic denitrifiers, and anammox bacteria, there are some other N-cycling microorganisms that are less abundant but functionally important in wastewater nitrogen removal. These microbes include, but not limited to ammonia oxidizing archaea (AOA), complete ammonia oxidation (comammox) bacteria, dissimilatory nitrate reduction to ammonia (DNRA) bacteria, and nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms. In the past decade, the development of high-throughput molecular technologies has enabled the detection, quantification, and characterization of these minor populations. The aim of this review is therefore to synthesize the current knowledge on the distribution, ecological niche, and kinetic properties of these “overlooked” N-cycling microbes at wastewater treatment plants. Their potential applications in novel wastewater nitrogen removal processes are also discussed. A comprehensive understanding of these overlooked N-cycling microbes from microbiology, ecology, and engineering perspectives will facilitate the design and operation of more efficient and sustainable biological nitrogen removal processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号