首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
World governments have committed to increase the global protected areas coverage by 2020, but the effectiveness of this commitment for protecting biodiversity depends on where new protected areas are located. Threshold‐ and complementarity‐based approaches have been independently used to identify important sites for biodiversity. We brought together these approaches by performing a complementarity‐based analysis of irreplaceability in important bird and biodiversity areas (IBAs), which are sites identified using a threshold‐based approach. We determined whether irreplaceability values are higher inside than outside IBAs and whether any observed difference depends on known characteristics of the IBAs. We focused on 3 regions with comprehensive IBA inventories and bird distribution atlases: Australia, southern Africa, and Europe. Irreplaceability values were significantly higher inside than outside IBAs, although differences were much smaller in Europe than elsewhere. Higher irreplaceability values in IBAs were associated with the presence and number of restricted‐range species; number of criteria under which the site was identified; and mean geographic range size of the species for which the site was identified (trigger species). In addition, IBAs were characterized by higher irreplaceability values when using proportional species representation targets, rather than fixed targets. There were broadly comparable results when measuring irreplaceability for trigger species and when considering all bird species, which indicates a good surrogacy effect of the former. Recently, the International Union for Conservation of Nature has convened a consultation to consolidate global standards for the identification of key biodiversity areas (KBAs), building from existing approaches such as IBAs. Our results informed this consultation, and in particular a proposed irreplaceability criterion that will allow the new KBA standard to draw on the strengths of both threshold‐ and complementarity‐based approaches.  相似文献   

2.
China's Belt and Road Initiative (BRI) sets to create connections and build infrastructure across Eurasia, Asia, and parts of the African continent in its initial phase and is the largest infrastructure project of all time. Any infrastructure project on this scale will necessarily pass through ecofragile regions and key biodiversity areas (KBAs). This creates an imperative to identify possible areas of impact and probable effects on conservation values to facilitate adaptive planning and to mitigate, minimize, or avoid impacts. Using the highest resolution route maps of the BRI available, I overlaid the proposed road and rail routes on KBAs, protected areas, and predicted biodiversity hotspots for over 4138 animal and 7371 plant species. I also assessed the relationship between the proposed route with the distribution of mines across BRI countries and the proportion of deforestation and forest near routes. Infrastructure, especially mining, was clustered near the proposed route; thus, construction and development along the route may increase the size and number of mines. Up to 15% of KBAs were within 1 km of proposed railways. Thus, planned and probable development along the routes may pose a significant risk to biodiversity, especially because the majority of KBAs are unprotected. Many biodiversity hotspots for different taxa were near the route. These hotspots varied between taxa, making systematic management and environmental impact assessments an effective strategy for at least some taxa. A combination of planning and mitigation strategies will likely be necessary to protect the most important areas for biodiversity proximal to development, especially in currently unprotected KBAs and other regions that need protection. A fuller assessment of trade-offs between conservation and other values will be necessary to make good decisions for each project and site being developed, including potentially modifying parts of the route to minimize impacts. Modification or foregoing of infrastructure may be needed if stakeholders consider the conservation costs too high.  相似文献   

3.
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43–0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25–29% of fish habitats, 16–23% of species, and 30–31% of priority conservation areas. Moreover, 6–21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.  相似文献   

4.
Effective conservation policies require comprehensive knowledge of biodiversity. However, knowledge shortfalls still remain, hindering possibilities to improve decision making and built such policies. During the last 2 decades, conservationists have made great efforts to allocate resources as efficiently as possible but have rarely considered the idea that if research investments are also strategically allocated, it would likely fill knowledge gaps while simultaneously improving conservation actions. Therefore, prioritizing areas where both conservation and research actions could be conducted becomes a critical endeavor that can further maximize return on investment. We used Zonation, a conservation planning tool and geographical distributions of amphibians, birds, mammals, and reptiles to suggest and compare priority areas for conservation and research of terrestrial vertebrates worldwide. We also evaluated the degree of human disturbance in both types of priority areas by describing the value of the human footprint index within such areas. The spatial concordance between priority conservation and research areas was low: 0.36% of the world's land area. In these areas, we found it would be possible to protect almost half of the currently threatened species and to gather information on nearly 42% of data-deficient (DD) species. We also found that 6199 protected areas worldwide are located in such places, although only 35% of them have strict conservation purposes. Areas of consensus between conservation and research areas represent an opportunity for simultaneously conserving and acquiring knowledge of threatened and DD species of vertebrates. Although the picture is not the most encouraging, joint conservation and research efforts are possible and should be fostered to save vertebrate species from our own ignorance and extinction.  相似文献   

5.
Establishing protected areas has long been an effective conservation strategy and is often based on readily surveyed species. The potential of any freshwater taxa to be a surrogate for other aquatic groups has not been explored fully. We compiled occurrence data on 72 species of freshwater fishes, amphibians, mussels, and aquatic reptiles for the Great Plains, Wyoming (U.S.A.). We used hierarchical Bayesian multispecies mixture models and MaxEnt models to describe species’ distributions and the program Zonation to identify areas of conservation priority for each aquatic group. The landscape‐scale factors that best characterized aquatic species’ distributions differed among groups. There was low agreement and congruence among taxa‐specific conservation priorities (<20%), meaning no surrogate priority areas would include or protect the best habitats of other aquatic taxa. Common, wideranging aquatic species were included in taxa‐specific priority areas, but rare freshwater species were not included. Thus, the development of conservation priorities based on a single freshwater aquatic group would not protect all species in the other aquatic groups.  相似文献   

6.
Africa contains much of Earth's biological and cultural–linguistic diversity, but conserving this diversity is enormously challenging amid widespread poverty, expanding development, social unrest, and rapidly growing human population. We examined UNESCO (United Nations Educational, Scientific and Cultural Organization) Natural World Heritage Sites (WHSs) on continental Africa and nearby islands—48 protected areas containing globally important natural or combined natural and cultural resources—to gauge the potential for enlisting Indigenous peoples in their conservation. We used geographic information system technology to identify instances where Natural WHSs co-occur with Indigenous languages, a key indicator of cultural diversity. And, we compared the geographic ranges for 4 taxa and selected freshwater species with occurrence of all Indigenous languages within Natural WHSs and subsections of WHSs covered by the geographic extent of Indigenous languages to measure the correlation between linguistic and biological diversity. Results indicated that 147 languages shared at least part of their geographic extent with Natural WHSs. Instances of co-occurrence where a WHS, a language, or both were endangered marked localities particularly deserving conservation attention. We examined co-occurrence of all languages and all species, all languages and endangered species, and endangered languages and endangered species and found a correlation between linguistic and biological diversity that may indicate fundamental links between these very different measures of diversity. Considering only endangered species or endangered languages and species reduced that correlation, although considerable co-occurrence persisted. Shared governance of government-designated reserves is applicable for natural WHSs because it capitalizes on the apparent connection between culture and nature. Natural WHSs in Africa containing speakers of Indigenous languages present opportunities to conserve both nature and culture in highly visible settings where maintaining natural systems may rely on functioning Indigenous cultural systems and vice versa.  相似文献   

7.
Abstract:  The establishment of ecological networks (ENs) has been proposed as an ideal way to counteract the increasing fragmentation of natural ecosystems and as a necessary complement to the establishment of protected areas for biodiversity conservation. This conservation tool, which comprises core areas, corridors, and buffer areas, has attracted the attention of several national and European institutions. It is thought that ENs can connect habitat patches and thus enable species to move across unsuitable areas. In Europe, however, ENs are proposed as an oversimplification of complex ecological concepts, and we maintain that they are of limited use for biodiversity conservation for several reasons. The ENs are species specific and operate on species-dependent scales. In addition, the information needed for their implementation is only available for a handful of species. To overcome these limitations, ENs have been proposed on a landscape scale (and for selected "focal" species), but there is no indication that the structural composition of core areas, corridors, and buffer areas could ensure the functional connectivity and improve the viability of more than a few species. The theory behind ENs fails to provide sufficient practical information on how to build them (e.g., width, shape, structure, content). In fact, no EN so far has been validated in practice (ensuring connectivity and increasing overall biodiversity conservation), and there are no signs that validation will be possible in the near future. In view of these limitations, it is difficult to justify spending economic and political resources on building systems that are at best working hypotheses that cannot be evaluated on a practical level.  相似文献   

8.
Protected areas are a key instrument for conservation. Despite this, they are vulnerable to risks associated with weak governance, land-use intensification, and climate change. We used a novel hierarchical optimization approach to identify priority areas for expanding the global protected area system that explicitly accounted for such risks while maximizing protection of all known terrestrial vertebrate species. To incorporate risk categories, we built on the minimum set problem, where the objective is to reach species distribution protection targets while accounting for 1 constraint, such as land cost or area. We expanded this approach to include multiple objectives accounting for risk in the problem formulation by treating each risk layer as a separate objective in the problem formulation. Reducing exposure to these risks required expanding the area of the global protected area system by 1.6% while still meeting conservation targets. Incorporating risks from weak governance drove the greatest changes in spatial priorities for protection, and incorporating risks from climate change required the largest increase (2.52%) in global protected area. Conserving wide-ranging species required countries with relatively strong governance to protect more land when they bordered nations with comparatively weak governance. Our results underscore the need for cross-jurisdictional coordination and demonstrate how risk can be efficiently incorporated into conservation planning. Planeación de las áreas protegidas para conservar la biodiversidad en un futuro incierto  相似文献   

9.
Marine protected areas (MPAs) are a primary tool for the stewardship, conservation, and restoration of marine ecosystems, yet 69% of global MPAs are only partially protected (i.e., are open to some form of fishing). Although fully protected areas have well-documented outcomes, including increased fish diversity and biomass, the effectiveness of partially protected areas is contested. Partially protected areas may provide benefits in some contexts and may be warranted for social reasons, yet social outcomes often depend on MPAs achieving their ecological goals to distinguish them from open areas and justify the cost of protection. We assessed the social perceptions and ecological effectiveness of 18 partially protected areas and 19 fully protected areas compared with 19 open areas along 7000 km of coast of southern Australia. We used mixed methods, gathering data via semistructured interviews, site surveys, and Reef Life (underwater visual census) surveys. We analyzed qualitative data in accordance with grounded theory and quantitative data with multivariate and univariate linear mixed-effects models. We found no social or ecological benefits for partially protected areas relative to open areas in our study. Partially protected areas had no more fish, invertebrates, or algae than open areas; were poorly understood by coastal users; were not more attractive than open areas; and were not perceived to have better marine life than open areas. These findings provide an important counterpoint to some large-scale meta-analyses that conclude partially protected areas can be ecologically effective but that draw this conclusion based on narrower measures. We argue that partially protected areas act as red herrings in marine conservation because they create an illusion of protection and consume scarce conservation resources yet provide little or no social or ecological gain over open areas. Fully protected areas, by contrast, have more fish species and biomass and are well understood, supported, and valued by the public. They are perceived to have better marine life and be improving over time in keeping with actual ecological results. Conservation outcomes can be improved by upgrading partially protected areas to higher levels of protection including conversion to fully protected areas.  相似文献   

10.
Knowing how much biodiversity is captured by protected areas (PAs) is important to meeting country commitments to international conservation agreements, such as the Convention on Biological Diversity, and analyzing gaps in species coverage by PAs contributes greatly to improved locating of new PAs and conservation of species. Regardless of their importance, global gap analyses have been conducted only for a few taxonomic groups (e.g., mangroves, corals, amphibians, birds, mammals). We conducted the first global gap analysis for a complete specious plant group, the highly threatened Cactaceae. Using geographic distribution data of 1438 cactus species, we assessed how well the current PA network represents them. We also systematically identified priority areas for conservation of cactus species that met and failed to meet conservation targets accounting for their conservation status. There were 261 species with no coverage by PAs (gap species). A greater percentage of cacti species (18%) lacked protection than mammals (9.7%) and birds (5.6%), and also a greater percentage of threatened cacti species (32%) were outside protected areas than amphibians (26.5%), birds (19.9%), or mammals (16%). The top 17% of the landscape that best captured covered species represented on average 52.9% of species ranges. The priority areas for gap species and the unprotected portion of the ranges of species that only partially met their conservation target (i.e., partial gap) captured on average 75.2% of their ranges, of which 100 were threatened gap species. These findings and knowledge of the threats affecting species provide information that can be used to improve planning for cacti conservation and highlight the importance of assessing the representation of major groups, such as plants, in PAs to determining the performance of the current PA network.  相似文献   

11.
Abstract: Protected areas are a cornerstone of conservation and have been designed largely around terrestrial features. Freshwater species and ecosystems are highly imperiled, but the effectiveness of existing protected areas in representing freshwater features is poorly known. Using the inland waters of Michigan as a test case, we quantified the coverage of four key freshwater features (wetlands, riparian zones, groundwater recharge, rare species) within conservation lands and compared these with representation of terrestrial features. Wetlands were included within protected areas more often than expected by chance, but riparian zones were underrepresented across all (GAP 1–3) protected lands, particularly for headwater streams and large rivers. Nevertheless, within strictly protected lands (GAP 1–2), riparian zones were highly represented because of the contribution of the national Wild and Scenic Rivers Program. Representation of areas of groundwater recharge was generally proportional to area of the reserve network within watersheds, although a recharge hotspot associated with some of Michigan's most valued rivers is almost entirely unprotected. Species representation in protected areas differed significantly among obligate aquatic, wetland, and terrestrial species, with representation generally highest for terrestrial species and lowest for aquatic species. Our results illustrate the need to further evaluate and address the representation of freshwater features within protected areas and the value of broadening gap analysis and other protected‐areas assessments to include key ecosystem processes that are requisite to long‐term conservation of species and ecosystems. We conclude that terrestrially oriented protected‐area networks provide a weak safety net for aquatic features, which means complementary planning and management for both freshwater and terrestrial conservation targets is needed.  相似文献   

12.
The concept of shifting baselines in conservation science implies advocacy for the use of historical knowledge to inform these baselines but does not address the feasibility of restoring sites to those baselines. In many regions, conservation feasibility varies among sites due to differences in resource availability, statutory power, and land‐owner participation. We used zooarchaeological records to identify a historical baseline of the freshwater mussel community's composition before Euro‐American influence at a river‐reach scale (i.e., a kilometer stretch of river that is abiotically similar) in the Leon River of central Texas (U.S.A.). We evaluated how the community reference position and the feasibility of conservation might enable identification of sites where conservation actions would preserve historically representative communities and be likely to succeed. We devised a conceptual model that incorporated community information and landscape factors to link the best conservation areas to potential cost and conservation benefits. Using fuzzy ordination, we identified modern mussel beds that were most like the historical baseline. We then quantified housing density and land use near each river reach identified to estimate feasibility of habitat restoration. Using our conceptual framework, we identified reaches of high conservation value (i.e., contain the best mussel beds) and where restoration actions would be most likely to succeed. Reaches above Lake Belton were most similar in species composition and relative abundance to zooarchaeological sites. A subset of these mussel beds occurred in locations where conservation actions appeared most feasible. Our results show how to use zooarchaeological data (biodiversity data often readily available) and estimates of conservation feasibility to inform conservation priorities at a local spatial scale.  相似文献   

13.
Evaluation of protected area effectiveness is critical for conservation of biodiversity. Protected areas that prioritize biodiversity conservation are, optimally, located and managed in ways that support relatively large and stable or increasing wildlife populations. Yet evaluating conservation efficacy remains a challenging endeavor. We used an extensive community science data set, eBird, to evaluate the efficacy of protected areas for birds across the Gulf of Mexico and Atlantic coasts of the United States. We modeled trends (2007–2018) for 12 vulnerable waterbirds that use coastal areas during breeding or wintering. We compared two types of protected areas—sites where conservation organizations implemented active stewardship or management or both to reduce human disturbance (hereafter stewardship sites) and local, state, federal, and private protected areas managed to maintain natural land cover (hereafter protected areas)—as well as unprotected areas. We evaluated differences in trends between stewardship, protected, and unprotected areas across the Gulf and Atlantic coasts as a whole. Similar to a background sample, stewardship was known to occur at stewardship sites, but unknown at protected and unprotected areas. Four of 12 target species—Black Skimmer (Rynchops niger), Brown Pelican (Pelecanus occidentalis), Least Tern (Sternula antillarum), and Piping Plover (Charadrius melodus)—had more positive trends (two to 34 times greater) at stewardship sites than protected areas. Furthermore, five target species showed more positive trends at sites with stewardship programs than unprotected sites during at least one season, whereas seven species showed more positive trends at protected than unprotected areas. No species had more negative trends at stewardship sites than unprotected areas, and two species had more negative trends at protected than unprotected areas. Anthropogenic disturbance is a serious threat to coastal birds, and our findings demonstrate that stewardship to reduce its negative impacts helps ensure conservation of vulnerable waterbirds.  相似文献   

14.
Expansion of the global protected-area network has been proposed as a strategy to address threats from accelerating climate change and species extinction. A key step in increasing the effectiveness of such expansion is understanding how novel threats to biodiversity from climate change alter concepts such as rewilding, which have underpinned many proposals for large interconnected reserves. We reviewed potential challenges that climate change poses to rewilding and found that the conservation value of large protected areas persists under climate change. Nevertheless, more attention should be given to protection of microrefugia, macrorefugia, complete environmental gradients, and areas that connect current and future suitable climates and to maintaining ecosystem processes and stabilizing feedbacks via conservation strategies that are resilient to uncertainty regarding climate trends. Because a major element of the threat from climate change stems from its novel geographic patterns, we examined, as an example, the implications for climate-adaptation planning of latitudinal, longitudinal (continental to maritime), and elevational gradients in climate-change exposure across the Yellowstone-to-Yukon region, the locus of an iconic conservation proposal initially designed to conserve wide-ranging carnivore species. In addition to a continued emphasis on conserving intact landscapes, restoration of degraded low-elevation areas within the region is needed to capture sites important for landscape-level climate resilience. Extreme climate exposure projected for boreal North America suggests the need for ambitious goals for expansion of the protected-area network there to include refugia created by topography and ecological features, such as peatlands, whose conservation can also reduce emissions from carbon stored in soil. Qualitative understanding of underlying reserve design rules and the geography of climate-change exposure can strengthen the outcomes of inclusive regional planning processes that identify specific sites for protection.  相似文献   

15.
Abstract:  The Natura 2000 network is the most important conservation effort being implemented in Europe. Nevertheless, no comprehensive and systematic region—or nationwide evaluation of the effectiveness of the network has been conducted. We used habitat suitability models and extent of occurrence of 468 species of vertebrates to evaluate the contribution of the Natura 2000 network to biodiversity conservation in Italy. We also estimated the population size of 101 species inside the Natura 2000 network to assess its capacity to maintain or improve the population status of listed species. In general the Italian Natura 2000 did not seem to integrate existing protected areas well. The Natura 2000 network increased from 11% to 20% the area devoted to conservation in Italy and the coverage provided to areas with high biodiversity. Nevertheless, some areas with high numbers of species were devoid of conservation areas, and more than 50% of the highly irreplaceable areas were not considered in the system. Moreover, the Natura 2000 network cannot maintain 44–80% (depending on the taxa considered) of the species in a "favorable conservation status" under World Conservation Union Red List criteria. The Natura 2000 network is probably stronger than the results of our analyses suggest. The system is based on a site-specific expert-based strategy and is driven by direct and detailed knowledge of local diversity. Nevertheless, if Natura 2000 is taken to represent the final point of all the EU conservation policies, it will inevitably fail. Its role in conservation could be enhanced by integrating the Natura 2000 system into a more general strategy that considers natural processes and the ecological and evolutionary mechanisms underlying these processes.  相似文献   

16.
Abstract:  Analysis of large-scale biodiversity patterns can uncover general relationships and problems that need to be taken into account when conservation strategies are developed. Nevertheless, these large-scale patterns need to be supplemented with information from local studies that can identify specific problems and determine how the land can be divided between conservation and development interests. I analyzed biodiversity patterns at three different scales to show how various scales of research contributed to conservation planning. A gap analysis for all of sub-Saharan Africa revealed that the network of wildlife reserves provides insufficient protection of narrowly endemic and threatened species, mainly because such species are aggregated in certain areas with dense human populations. A more fine-grained analysis of the distribution of forest birds of eastern Africa generally confirmed the results obtained with coarse-scale data and added precision by identifying forest tracts where conservation actions should be concentrated. Detailed local distribution data for one of the prioritized areas, the Uluguru Mountains in Tanzania, suggest that the actions to halt the loss of biodiversity should be concentrated in the submontane zone, immediately adjacent to densely populated areas. To achieve conservation on the ground, these general planning tools must be supplemented with other kinds of research concerning land-use and local knowledge and with approaches that promote more sustainable development. Different types of institutions will be needed for these different tasks, but it is essential that researchers maintain a dialogue with planners in this area .  相似文献   

17.
Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields. We scored the relevance of personality and conservation issues for each study to identify which studies meaningfully integrated the 2 fields as opposed to surface-level connections or vague allusions. We found a taxonomic bias toward mammals (29% of all studies). Very few amphibian or reptile studies applied personality research to conservation issues (6% each). Climate change (21%), invasive species (15%), and captive breeding and reintroduction (13%) were the most abundant conservation subfields that occurred in our search, though a substantial proportion of these papers weakly integrated conservation and animal personality (climate change 54%, invasive species 51%, captive breeding and reintroduction 40%). Based on our results, we recommend that researchers strive for consistent and broadly applicable terminology when describing consistent behavioral differences to minimize confusion and improve the searchability of research. We identify several gaps in the literature that appear to be promising and fruitful avenues for future research, such as disease transmission as a function of sociability or exploration as a driver of space use in protected areas. Practitioners can begin informing future conservation efforts with knowledge gained from animal personality research.  相似文献   

18.
Abstract: The establishment of marine protected areas is often viewed as a conflict between conservation and fishing. We considered consumptive and nonconsumptive interests of multiple stakeholders (i.e., fishers, scuba divers, conservationists, managers, scientists) in the systematic design of a network of marine protected areas along California's central coast in the context of the Marine Life Protection Act Initiative. With advice from managers, administrators, and scientists, a representative group of stakeholders defined biodiversity conservation and socioeconomic goals that accommodated social needs and conserved marine ecosystems, consistent with legal requirements. To satisfy biodiversity goals, we targeted 11 marine habitats across 5 depth zones, areas of high species diversity, and areas containing species of special status. We minimized adverse socioeconomic impacts by minimizing negative effects on fishers. We included fine‐scale fishing data from the recreational and commercial fishing sectors across 24 fisheries. Protected areas designed with consideration of commercial and recreational fisheries reduced potential impact to the fisheries approximately 21% more than protected areas designed without consideration of fishing effort and resulted in a small increase in the total area protected (approximately 3.4%). We incorporated confidential fishing data without revealing the identity of specific fisheries or individual fishing grounds. We sited a portion of the protected areas near land parks, marine laboratories, and scientific monitoring sites to address nonconsumptive socioeconomic goals. Our results show that a stakeholder‐driven design process can use systematic conservation‐planning methods to successfully produce options for network design that satisfy multiple conservation and socioeconomic objectives. Marine protected areas that incorporate multiple stakeholder interests without compromising biodiversity conservation goals are more likely to protect marine ecosystems.  相似文献   

19.
Transboundary conservation is playing an increasingly important role in maintaining ecosystem integrity and halting biodiversity loss caused by anthropogenic activities. However, lack of information on species distributions in transboundary regions and understanding of the threats in these areas impairs conservation. We developed a spatial conservation plan for the transboundary areas between Yunnan province, southwestern China, and neighboring Myanmar, Laos, and Vietnam in the Indo-Burma biodiversity hotspot. To identify priority areas for conservation and restoration, we determined species distribution patterns and recent land-use changes and examined the spatiotemporal dynamics of the connected natural forest, which supports most species. We assessed connectivity with equivalent connected area (ECA), which is the amount of reachable habitat for a species. An ECA incorporates the presence of habitat in a patch and the amount of habitat in other patches within dispersal distance. We analyzed 197,845 locality records from specimen collections and monographs for 21,004 plant and vertebrate species. The region of Yunnan immediately adjacent to the international borders had the highest species richness, with 61% of recorded species and 56% of threatened vertebrates, which suggests high conservation value. Satellite imagery showed the area of natural forest in the border zone declined by 5.2% (13,255 km2) from 1995 to 2018 and monoculture plantations increased 92.4%, shrubland 10.1%, and other cropland 6.2%. The resulting decline in connected natural forest reduced the amount of habitat, especially for forest specialists with limited dispersal abilities. The most severe decline in connectivity was along the Sino-Vietnamese border. Many priority areas straddle international boundaries, indicating demand and potential for establishing transboundary protected areas. Our results illustrate the importance of bi- and multilateral cooperation to protect biodiversity in this region and provide guidance for future conservation planning and practice.  相似文献   

20.
Customary medicinal plant species used by Australian Aborigines are disappearing rapidly with its associated knowledge, due to the loss of habitats. Conservation and protection of these species is important as they represent sources of novel therapeutic phytochemical compounds and are culturally valuable. Information on the spatial distribution and use of customary medicinal plants is often inadequate and fragmented, posing limitations on the identification and conservation of species-rich areas and culturally valuable habitats.In this study, the habitat suitability modeling program, MaxEnt, was used to predict the potential ecological niches of 431 customary medicinal plant species, based on bioclimatic variables. Specimen locality records were obtained from the Global Biodiversity Information Facility (GBIF) data portal and from Australia's Virtual Herbarium (AVH).Ecological niche models of 414 predicted species, which had 30 or more occurrence points, were used to produce maps indicating areas that were ecologically suitable for multiple species (concordance of high predicted ecological suitability) and having cultural values. For the concordance map, individual species niche models were thresholded and summed. To derive a map of culturally valuable areas, customary medicinal uses from Customary Medicinal Knowledgebase (CMKb) (www.biolinfo.org/cmkb) were used to weight individual species models, resulting in a value within each grid cell reflecting its cultural worth.Even though the available information is scarce and fragmented, our approach provides an opportunity to infer areas predicted to be suitable for multiple species (i.e. concordance hotspots) and to estimate the cultural value of a particular geographical area. Our results also indicate that to conserve bio-cultural diversity, comprehensive information and active participation of Aboriginal communities is indispensable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号