首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species’ phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.  相似文献   

2.
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.  相似文献   

3.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

4.
Field-based cultivation of Kappaphycus and Eucheuma seaweeds is widespread across the tropics and is largely done to extract the polysaccharide carrageenan, which is used in commercial applications. Although such seaweed farming has been cited as a sustainable alternative livelihood to destructive fishing, there has not been a comprehensive review of its environmental impacts to assess its potential conservation benefit. We reviewed the peer-reviewed and industry gray literature to determine what is known about seaweed farming techniques and their impacts on local ecosystems, organisms, and ecosystem services. We identified 43 tropical or subtropical countries that are currently cultivating or have cultivated carrageenophytes. Ecosystem impacts of seaweed farming were measured directly in 33 publications with variable results. Placement of seaweed farms above seagrass beds led to reduced productivity and shoot density in 5 studies and reduced or altered meiofaunal abundance and diversity in 6 studies. On coral reefs, overgrowth of corals by farmed seaweed species was documented in 8 cases. Two studies showed changes to herbivorous fish communities in adjacent areas because seaweed farms changed the environment, whereas in 2 studies measures of overall abundance or diversity did not change. The impacts of seaweed farming may not be as destructive as some other human activities, but they should still be considered when establishing new farms or managing existing farm sites. Our findings are consistent with suggestions to mitigate impact on local ecosystems by shifting seaweed farms to deeper, sandy-bottom areas. However, some of these changes may adversely affect farmers and associated communities.  相似文献   

5.
Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.  相似文献   

6.
Seagrass species function as typical foundation species that unifies most ecosystem processes. This ecosystem role depends largely on the morphological characteristics and structural complexity of seagrass beds, including their ecological importance for fish species. This study examined relationships between seagrass bed characteristics and associated fish communities in mixed seagrass beds. Correspondence analysis (CA) and canonical correlation analysis (CCoA) were performed to estimate relationships for individual seagrass bed characteristics. The CCoA results revealed that species richness and three-dimensional structure of seagrass had great effect on the biomass and richness of the associated fish community. The CA results revealed that the relative importance of seagrass bed characteristics differed among fish functional groups including fishes appearing on the surface of, inside, and on the bottom of seagrass beds. The fishes found on the surface of the beds preferred beds with low seagrass biomass and high three-dimensional structure, those inside the beds preferred beds with high seagrass biomass and high three-dimensional structure, and those on the bottom of the beds preferred locations with low seagrass biomass and low three-dimensional structure. The results of this study provide compelling evidence that seagrass beds with high species diversity and high three-dimensional structure, but intermediate biomass, may provide the great benefit to the associated fish community. Such niche complementarity among fishes may be a process facilitated by seagrass diversity for secondary production as an ecosystem functioning.  相似文献   

7.
Seagrass beds are highly important for tropical ecosystems by supporting abundant and diverse fish assemblages that form the basis for artisanal fisheries. Although a number of local- and regional-scale variables are known to influence the abundance, diversity and assemblage structure of seagrass-associated fish assemblages, few studies have evaluated the relative and joint (interacting) influences of variables, especially those acting at different scales. Here, we examined the relative importance of local- and regional-scale factors structuring seagrass-associated fish assemblages, using a field survey in six seagrass (Thalassodendron ciliatum) areas around Unguja Island (Zanzibar, Tanzania). Fish density and assemblage structure were mostly affected by two regional-scale variables; distance to coral reefs, which positively affected fish density, and level of human development, which negatively affected fish density. On the local scale, seagrass biomass had a positive (but weaker) influence on fish density. However, the positive effect of seagrass biomass decreased with increasing level of human development. In summary, our results highlight the importance of assessing how multiple local and regional variables, alone and together, influence fish communities, in order to improve management of seagrass ecosystems and their services.  相似文献   

8.
As ecosystems come under increasing anthropogenic pressure, rare species face the highest risk of extinction. Paradoxically, data necessary to evaluate the conservation status of rare species are often lacking because of the challenges of detecting species with low abundance. One group of fishes subject to this undersampling bias are those with cryptic body patterns. Twenty‐one percent of cryptic fish species assessed for their extinction risk (International Union for Conservation of Nature [IUCN]) are data deficient. We developed a nondestructive method for surveying cryptically patterned marine fishes based on the presence of biofluorescence (underwater biofluorescence census, UBC). Blue LED torches were used to investigate how widespread biofluorescence was in cryptic reef fishes in the Coral Triangle region. The effectiveness of UBC to generate abundance data was tested on a data‐deficient pygmy seahorse species (Hippocampus bargibanti) and compared with data obtained from standard underwater visual census (UVC) surveys. We recorded 95 reef fish species displaying biofluorescence, 73 of which had not been previously described as biofluorescent. Of those fish with cryptic patterns, 87% were biofluorescent compared with 9% for noncryptic fishes. The probability of species displaying biofluorescence was 70.9 times greater for cryptic species than for noncryptic species. Almost twice the number of H. bargibanti was counted using the UBC compared with UVC. For 2 triplefin species (Ucla xenogrammus, Enneapterygius tutuilae), the abundance detected with UBC was triple that detected with UVC. The UBC method was effective at finding cryptic species that would otherwise be difficult to detect and thus will reduce interobserver variability inherent to UVC surveys. Biofluorescence is ubiquitous in cryptic fishes, making this method applicable across a wide range of species. Data collected using UBC could be used with multiple IUCN criteria to assess the extinction risk of cryptic species. Adopting this technique will enhance researchers’ ability to survey cryptic species and facilitate management and conservation of cryptic marine species.  相似文献   

9.
We tracked the long-term movements of 70 parrotfishes, surgeonfishes and goatfishes captured inside a small (1.3 km2) marine protected area (MPA: Kealakekua Bay Marine Life Conservation District, Hawaii) by implanting them with small transmitters and deploying underwater monitoring devices inside the bay and along 100 km of the adjacent west Hawaii coastline. Individual fish were detected inside Kealakekua Bay for up to 612 days but many were detected for much shorter periods (median = 52 days). There were species-specific differences in the scale of movements and habitats used, but most fish utilized between 0.2 and 1.6 km of coastline, and individuals of each species showed some degree of diel habitat shift. A wide variety of reef fishes captured inside the MPA swam back and forth across an MPA boundary intersecting continuous reef (i.e., this boundary was porous to reef fish movements), but only 1 of 11 species tagged crossed a wide sandy channel inside Kealakekua Bay suggesting that this feature may function as a natural barrier to movements. Results indicate relatively small MPAs (<2 km of coastline) could provide effective, long-term protection for multi-species assemblages of reef fishes provided that boundaries are situated along major habitat breaks (e.g., large sand channels between reefs) that may serve as natural barriers to reef fish movements. It is crucial that a multi-species approach be used when assessing MPA effectiveness.  相似文献   

10.
Fifteen taxa of fish larvae (most identified to species) and 6 taxa of crustaceans (most identified to species) were studied in zooplankton samples collected 0.2, 0.5, 1.0 and 3.0 km off the leeward coast of Oahu, Hawaii in May and July 1975. The following distributional patterns were elucidated: inshore (2 spp); inshore-neritic (2 spp); neritic (7 spp); and offshore-neritic (7 spp). Three of these 18 species had age-related differences in behaviour that led to age-dependent distributional patterns, and 4 further species had a random distribution. All abundant types of fish larvae were either oceanic as adults or were hatches from the demersal or brooded eggs of reef species. The larvae of reef fishes with pelagic eggs were not abundant in the nearshore region sampled and were probably to be found more than 3 km offshore. The offshore-neritic distributional pattern evidently resulted from relatively passive movement with currents. In contrast, maintenance of inshore and neritic patterns probably required relatively active swimming by the animals. The current regime, including a tidal eddy and possible nearshore upwelling, probably helped maintain the inshore and neritic patterns of such animals. The limited area occupied by these inshore coastal plankton communities could make them particularly vulnerable to environmental changes, including anthrogenic ones.  相似文献   

11.
Successful settlement of pelagic fish larvae into benthic juvenile habitats may be enhanced by a shortened settlement period, since it limits larval exposure to predation in the new habitat. Because the spatial distribution of marine fish larvae immediately prior to settlement versus during settlement was unknown, field experiments were conducted at Ishigaki Island (Japan) using light trap sampling and underwater visual belt transect surveys to investigate the spatial distribution patterns of selected pre- and post-settlement fishes (Acanthuridae, Pomacentridae, Chaetodonidae and Lethrinidae) among four habitats (seagrass bed, coral rubble, branching coral and tabular coral). The results highlighted two patterns: patterns 1, pre- and post-settlement individuals showing a ubiquitous distribution among the four habitats (Acanthuridae) and pattern 2, pre-settlement individuals distributed in all habitats, but post-settlement individuals restricted to coral (most species of Pomacentridae and Chaetodontidae) or seagrass habitats (Lethrinidae). The first pattern minimizes the transition time between the larval pelagic stage and acquisition of a benthic reef habitat, the latter leading immediately to a juvenile lifestyle. In contrast, the second pattern is characterized by high settlement habitat selectivity by larvae and/or differential mortality immediately after settlement.  相似文献   

12.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

13.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

14.
Marine coastal ecosystems, commonly referred to as blue ecosystems, provide valuable services to society but are under increasing threat worldwide due to a variety of drivers, including eutrophication, development, land-use change, land reclamation, and climate change. Ecological restoration is sometimes necessary to facilitate recovery in coastal ecosystems. Blue restoration (i.e., in marine coastal systems) is a developing field, and projects to date have been small scale and expensive, leading to the perception that restoration may not be economically viable. We conducted a global cost–benefit analysis to determine the net benefits of restoring coral reef, mangrove, saltmarsh, and seagrass ecosystems, where the benefit is defined as the monetary value of ecosystem services. We estimated costs from published restoration case studies and used an adjusted-value-transfer method to assign benefit values to these case studies. Benefit values were estimated as the monetary value provided by ecosystem services of the restored habitats. Benefits outweighed costs (i.e., there were positive net benefits) for restoration of all blue ecosystems. Mean benefit:cost ratios for ecosystem restoration were eight to 10 times higher than prior studies of coral reef and seagrass restoration, most likely due to the more recent lower cost estimates we used. Among ecosystems, saltmarsh had the greatest net benefits followed by mangrove; coral reef and seagrass ecosystems had lower net benefits. In general, restoration in nations with middle incomes had higher (eight times higher in coral reefs and 40 times higher in mangroves) net benefits than those with high incomes. Within an ecosystem type, net benefit varied with restoration technique (coral reef and saltmarsh), ecosystem service produced (mangrove and saltmarsh), and project duration (seagrass). These results challenge the perceptions of the low economic viability of blue restoration and should encourage further targeted investment in this field.  相似文献   

15.
The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (< 10 cm total length) densities and seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.  相似文献   

16.
Yohei Nakamura 《Marine Biology》2010,157(11):2397-2406
An extensive seagrass bed on a fringing coral reef at Amitori Bay (southern Ryukyu Islands) disappeared completely in 2009 after a typhoon. Seagrass bed loss had a significant negative influence on not only seagrass bed residents but also commercially important coral reef fishes that utilize seagrass beds as nurseries or feeding grounds. With seagrass bed loss, mean species’ richness and densities of overall seagrass bed fishes per transect decreased by more than 75 and 85%, respectively. Most of the affected fishes were benthivores, piscivores, detritivores, and herbivores. Of 21 dominant species, 13 disappeared completely and 4 showed severe reductions in densities following seagrass bed loss, whereas the densities of 4 bottom-dwelling gobies did not change significantly. Thus, this study demonstrated that most seagrass bed fishes lack the ability to adapt to seagrass habitat loss, suggesting that increasing global seagrass loss will cause serious reductions in seagrass-associated fishes and fishery resources.  相似文献   

17.
The distribution of the main herbivorous fishes (Acanthuridae, Scaridae, Siganidae) was studied across a coral reef of the Jordanian coast in the Gulf of Aqaba (Red Sea). Visual counts were realized by diving along transects (200 m long and 5 m wide), parallel to the shore, at 10 stations located from the lagoon to 40 m deep on the outer reef slope. Herbivorous reef fishes reach their highest abundance on the reef front, where 234 fishes were counted per 1,000 m2. Their density decreases on the reef flat, with an average of 150 fish 1,000 m-2, and is lowest on the outer reef slope (69 fish 1,000 m-2). Surgeonfishes form 63% of the herbivorous ichthyofauna, parrotfishes 35%, and rabbitfishes 2%. Families and species display different distributions according to biota. The Acanthuridae dominate on the reef flat, whereas the Scaridae are more numerous on the outer reef slope. The evolution of the social structure of the main species was observed: the adults generally school in the lagoon and on the reef flat, but are mainly solitary on the reef slope. The distribution of juvenile individuals is more restricted: they are concentrated on the reef front and on the upper part of the reef slope.This study is part of a cooperation programme between the University of Nice (France) and the University of Jordan, to study the ecology of the coral reefs and the surrounding waters of the Jordanian coast (Gulf of Aqaba, Red Sea)  相似文献   

18.
Abstract:  Priorities for conservation, management, and associated activities will differ based on the interplay between nearness of ecosystems to full recovery from a disturbance (pristineness), susceptibility to climate change (environmental susceptibility [ES]), and capacity of human communities to cope with and adapt to change (social adaptive capacity [AC]). We studied 24 human communities and adjacent coral reef ecosystems in 5 countries of the southwestern Indian Ocean. We used ecological measures of abundance and diversity of fishes and corals, estimated reef pristineness, and conducted socioeconomic household surveys to determine the AC of communities adjacent to selected coral reefs. We also used Web-based oceanographic and coral mortality data to predict each site's ES to climate warming. Coral reefs of Mauritius and eastern Madagascar had low ES and consequently were not predicted to be affected strongly by warm water, although these sites were differentiated by the AC of the human community. The higher AC in Mauritius may increase the chances for successful self-initiated recovery and protective management of reefs of this island. In contrast, Madagascar may require donor support to build AC as a prerequisite to preservation efforts. The Seychelles and Kenya had high ES, but their levels of AC and disturbance differed. The high AC in the Seychelles could be used to develop alternatives to dependence on coral reef resources and reduce the effects of climate change. Pristineness weighted toward measures of fish recovery was greatest for Kenya's marine protected areas; however, most protected areas in the region were far from pristine. Conservation priorities and actions with realistic chances for success require knowledge of where socioecological systems lie among the 3 axes of environment, ecology, and society.  相似文献   

19.
Territorial user rights for fisheries have been advocated as a way to achieve sustainable resource management. However, few researchers have empirically assessed their potential as ancillary marine conservation instruments by comparing them to no‐take marine protected areas. In kelp (Lessonia trabeculata) forests of central Chile, we compared species richness, density, and biomass of macroinvertebrates and reef fishes among territorial‐user‐right areas with low‐level and high‐level enforcement, no‐take marine protected areas, and open‐access areas in 42 100‐m subtidal transects. We also assessed structural complexity of the kelp forest and substratum composition. Multivariate randomized permutation tests indicated macroinvertebrate and reef fish communities associated with the different access regimes differed significantly. Substratum composition and structural complexity of kelp forest did not differ among access regimes. Univariate analyses showed species richness, biomass, and density of macroinvertebrates and reef fishes were greater in highly enforced territorial‐user‐right areas and no‐take marine protected areas than in open‐access areas. Densities of macroinvertebrates and reef fishes of economic importance were not significantly different between highly enforced territorial‐user‐right and no‐take marine protected areas. Densities of economically important macroinvertebrates in areas with low‐level enforcement were significantly lower than those in areas with high‐level enforcement and no‐take marine protected areas but were significantly higher than in areas with open access. Territorial‐user‐right areas could be important ancillary conservation instruments if they are well enforced. Derechos de Usuario Territoriales para Pesquerías como Instrumentos Accesorios para la Conservación Marina Costera en Chile  相似文献   

20.
Despite the rapid rate of human-induced species losses, the relative influence of natural and anthropogenic factors on the functional diversity of species assemblages remains unknown for most ecosystems. A model was previously developed to predict the diversity structure of coral reef fish assemblages in 10 atolls of low human pressure and contrasting morphology of the Tuamotu Archipelago (French Polynesia). This existing model predicted smoothed histograms (spectra) of species richness according to size classes, diet classes and life-history classes of fish assemblages using a combination of environmental characteristics at different spatial scales. The present study applied the model to Tikehau, another atoll of the same archipelago where commercial fishing is practiced and where the same sampling strategy was reproduced. Significant differences appeared between predicted and observed species richness in several size, diet and life-history classes of fish assemblages in Tikehau. Two parameters which were not accounted for in the initial model, i.e. fishing pressure and atoll position within the archipelago, explained together 63% of variance in model residuals, >60% being explained by fishing pressure only. The respective effects of fishing and atoll position on the diversity of coral reef fish assemblages are discussed, with the potential of such modelling approach to assess the relative importance of factors affecting functional diversity within communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号