首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch experiments were conducted to study the short-term biological effects of rare earth ions (La3+, Ce3+) and their mixture on the nitrogen removal in a sequencing batch reactor (SBR). The data showed that higher NH+4―N removal rate, total inorganic nitrogen removal efficiency, and denitrification efficiency were achieved at lower concentrations of rare earth elements (REEs) (<1mg/L). In the first hour of the aeration stage of SBR, the presence of REEs increased the total inorganic nitrogen removal efficiency and NH+4―N removal efficiency by 15.7% and 10%―15%, respectively. When the concentrations of REEs were higher than 1mg/L, the total inorganic nitrogen removal efficiency decreased, and nitrate was found to accumulate in the effluent. When the concentrations of REEs was up to 50.0mg/L, the total inorganic nitrogen removal efficiency was less than 30% of the control efficiency with a high level of nitrate. Lower concentrations of REEs were found to accelerate the nitrogen conversion and removal in SBR.  相似文献   

2.
Because the efficiency of biological nutrient removal is always limited by the deficient carbon source for the low carbon/nitrogen (C/N) ratio in real domestic sewage, the denitrifying phosphorus removal (DNPR) was developed as a simple and efficient method to remove nitrogen and phosphorous. In addition, this method has the advantage of saving aeration energy while reducing the sludge production. In this context, a pre-denitrification anaerobic/anoxic/post-aeration + nitrification sequence batch reactor (pre-A2NSBR) system, which could also reduce high ammonia effluent concentration in the traditional two-sludge DNPR process, is proposed in this work. The pre-A2NSBR process was mainly composed of a DNPR SBR and a nitrifying SBR, operating as alternating anaerobic/anoxic/post-aeration + nitrification sequence. Herein, the long-term performance of different nitrate recycling ratios (0–300%) and C/N ratios (2.5–8.8), carbon source type, and functional microbial community were studied. The results showed that the removal efficiency of total inorganic nitrogen (TIN, including NH4+-N, NO2 -N, and NO3 -N) gradually increased with the nitrate recycling ratios, and the system reached the highest DNPR efficiency of 94.45% at the nitrate recycling ratio of 300%. The optimum C/N ratio was around 3.9–7.3 with a nitrogen and phosphorus removal efficiency of 80.15% and 93.57%, respectively. The acetate was proved to be a high-quality carbon source for DNPR process. The results of fluorescence in situ hybridization (FISH) analysis indicated that nitrifiers and phosphorus accumulating organisms (PAOs) were accumulated with a proportion of 19.41% and 26.48%, respectively.
  相似文献   

3.
In order to improve the nitrogen removal efficiency and save operational cost, the feasibility of the alternating aerobic-anoxic process (AAA process) applied in a sequencing batch reactor (SBR) system for nitrogen removal was investigated. Under sufficient influent alkalinity, the AAA process did not have an advantage over one aerobicanoxic (OAA) cycle on treatment efficiency because microorganisms had an adaptive stage at the alternating aerobic-anoxic transition, which would prolong the total cycling time. On the contrary, the AAA process made the system control more complicated. Under deficient influent alkalinity, when compared to OAA, the AAA process improved treatment efficiency and effluent quality with NH4 +-N in the effluent below the detection limit. In the nitrification, the average stoichiometric ratio between alkalinity consumption and ammonia oxidation is calculated to be 7.07 mg CaCO3/mg NH4 +-N. In the denitrification, the average stoichiometric ratio between alkalinity production and NO3 ?-N reduction is about 3.57 mg CaCO3/mg NO3 ?-N. As a result, half of the alkalinity previously consumed during the aerobic nitrification was recovered during the subsequent anoxic denitrification period. That was why the higher treatment efficiency in the AAA process was achieved without the supplement of bicarbonate alkalinity. If the lack of alkalinity in the influent was less than 1/3 of that needed, there is no need for external alkalinity addition and treatment efficiency was the same as that under sufficient influent alkalinity. Even if the lack of alkalinity in the influent was more than 1/3 of that needed, the AAA process was an optimal strategy because it reduced the external alkalinity addition and saved on operational cost.  相似文献   

4.
To determine the impact of photosynthesis and transpiration on nitrogen removal in wetlands, an artificial wetland planted with reeds was constructed to treat highly concentrated domestic wastewater. Under different meteorological and hydraulic conditions, the daily changes of photosynthesis and transpiration of reeds, as well as nitrogen removal efficiency were measured. It was found that net photosynthesis rate per unit leaf area was maintained on a high level (average 19.0 μmol CO2/(m2·s)) from 10:00 to 14:00 in July 2004 and reached a peak of 21.1 μmol CO2/(m2·s) when Photon Flux Density was high during the day. Meanwhile, TN and NH4 +-N removal efficiency rose to 79.6% and 89.6%, respectively—the maximum values observed in the test. Correlation coefficient analysis demonstrated a positive correlation among photon flux density, net photosynthetic rate, transpiration rate, and TN and NH4 +-N removal efficiency. In contrast, there was a negative correlation between stomatal conductance and TN and NH4 +-N removal efficiency. Results suggest that the photosynthesis and transpiration of wetland plants have a great impact on nitrogen removal efficiency of wetlands, which can be enhanced by an increase in the photosynthesis and transpiration rate. In addition, the efficiency of water usage by reeds and nitrogen removal efficiency could be affected by the water level in wetlands; a higher level boosts nitrogen removal efficiency.  相似文献   

5.
A new biological nitrogen removal process, which is named herein “The circulating fluidized bed bioreactor (CFBBR)”, was developed for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed (Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical and economic point of view, the optimum nitrified liquid recirculation ratewas 400%. With a shortest total retention time of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recirculation rate of 400% based on the influent flow rate, the average removal efficiencies of total nitrogen (TN) and soluble chemical oxygen demand (SCOD) were found to be 88% and 95%, respectively. The average effluent concentrations of TN and SCOD were 3.5 mg/L and 16 mg/L, respectively. The volatile suspended solid (VSS) concentration, nitrification rate and denitrification rate in the system were less than 1.0 g/L, 0.026-0.1 g NH4 +-N/g VSS·d, and 0.016–0.074 g NOx ?-N/g VSS·d, respectively.  相似文献   

6.
The effects and mechanism of chemical oxygen demand (COD), nitrogen, and phosphorus concentration removal by an integrated vertical-flow constructed wetland were studied in the wetland system during one inlet–outlet operating period, in two typical stages (each stage is connective 24 h, sampled once every 4 h). The concentration of ammonia decreased along the flow direction in the system, while levels of nitrate (NO3?-N) increased. In one operating period, total nitrogen (TN) concentration fell with rising operation time due to evacuative reoxygenation. The TN and NH3-N removal rates in the system were 26.6% and 97.5%, respectively. COD decreased rapidly in the early stages and more gradually in the direction of water flow of the wetland system. Average total phosphorus (TP) removal rate was 20.71%. TN and NO3?-N levels in water of the wetland had a tendency to decline gradually with increasing operation time. Ammonia concentrations displayed only a small variation with operation time. The results also indicated that the wetland was able to maintain its temperature. The oxygen content differed during the various operating stages and exerted a marked influence on COD, TP, and TN removal.  相似文献   

7.
In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4 +-N/L was fed into the reactors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8–1.0 mg/L. Whereas in the intermittently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0–2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and intermittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the intermittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.  相似文献   

8.
Since the ammonia in the effluent of the traditional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4 +-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the removing rate of NH4 +-N was related to the influent concentration of NH4 +-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4 +-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen (DO) in the influent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrification in BACF was the influent DO. When the influent NH4 +-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accumulation of the denitrification intermediates such as NO2 ?. In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone.  相似文献   

9.
Few people have so far explored into the research of the dynamics of various nitrogenous compounds (including water-soluble nitrogen) in composting of food wastes. This study aimed to investigate the solid-phase nitrogen, water-soluble nitrogen, nitrogen loss together with ammonia volatilization in the process of food wastes composting. A laboratory scale static aerobic reactor in the experiment was employed in the composting process of a synthetic food waste, in which sawdust was used as the litter amendment. In the experiment, oxygen was supplied by continuous forced ventilation for 15 days. The results have shown that the concentrations of total nitrogen and organic nitrogen decrease significantly in the composting process, whereas NH4 +-N concentration increases together with little fluctuation in NO3 ?-N. After composting, the total content of the water-soluble nitrogen compounds in the compost greatly increased, the total nitrogen loss amounted to 50% of the initial nitrogen, mainly attributed to ammonia volatilization. 56.7% of the total ammonia volatilization occurred in the middle and late composting of the thermophilic stage. This suggested that the control at the middle and late composting of thermophilic stage is the key to nitrogen loss in the food waste compost.  相似文献   

10.
Nitrous oxide (N2O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N2O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N2Oemission and to study the effects of heterotrophic activities on N2O emission during nitrification. The results showed that N2O emission was mainly attributed to nitrification rather than to denitrification. N2O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, NaO emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N2O emission to the removed ammonium nitrogen (N2O- N/NH4-N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.  相似文献   

11.
ABSTRACT

Total dissolved nitrogen (TDN), including dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON), is of significant importance in aquatic systems due to its roles in numerous environmental processes, such as nutrients for agriculture activities, sources for lake and estuary eutrophication, and one of the major factors contributing to disinfection byproduct formation. The distribution and impact of DIN on these processes are relatively well-understood; however, information on DON is extremely limited, as there is no direct method for its quantification. DON is conventionally determined by subtracting DIN from TDN. However, significant errors may be introduced if DIN is the predominant species in samples with high concentrations of TDN. In order to deal with this challenge, pretreatment method for nitrogen gas stripping was investigated using 56 water samples collected from various ecosystems. The results indicated that after nitrogen gas stripping pretreatment, removal % of ammonia nitrogen (NH3–N) was more than 87.5%, and the ratios of removal of NH3–N/removal of TDN (β) were over 86.5% for most of 56 samples with high [NH3–N], indicating a high efficiency for removal of NH3–N, and that NH3–N was the predominant nitrogen species removed for the samples with high [NH3–N]. Therefore, nitrogen gas stripping is an appropriate pretreatment method for DON testing when NH3–N is the dominant inorganic nitrogen species.  相似文献   

12.
Nitrogen Export from an Agriculture Watershed in the Taihu Lake Area, China   总被引:6,自引:0,他引:6  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8–43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO 3 -N + NH 4 + -N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

13.
14.
The groundwater samples collected from the shallow and deep groundwater aquifers of an industrial area of the Kanpur city (Uttar Pradesh, India) were analyzed for the concentration levels and distribution pattern of nitrogenous species, such as nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonical-nitrogen (NH4-N), organic-nitrogen (Org-N) and total Kjeldahl-nitrogen (TKN) to identify the possible contamination source. Geo-statistical approach was adopted to determine the distribution and extent of the contaminant plume. In the groundwater aquifers NO3-N, NO2-N, NH4-N, TKN, Org-N and Total-N ranged from 0.10 to 64.10, BDL (below detection limit)-6.57, BDL-39.00, 7.84–202.16, 1.39–198.97 and 8.89–219.43 mg l−1, respectively. About 42% and 26% of the groundwater samples of the shallow and deep groundwater aquifers, respectively, exceeded the BIS (Bureau of Indian Standards) guideline value of 10 mg l−1 for NO3-N and may pose serious health hazards to the people of the area. The results of the study revealed that the groundwater aquifers of the study area are highly contaminated with the nitrate and indicates point source pollution of nitrate in the study area.  相似文献   

15.
The short-term effect of anaerobic reaction time (AnRT) (i.e., 90, 120 and 150 min) on the denitrifying phosphorus (P) removal performance and N2O production was examined using a denitrifying enhanced biologic phosphorus removal (EBPR) sludge acclimatized with mixed acetate (HAc) and propionate (Pro) (in the molar ratio 3:1) as carbon sources. The results showed that when the AnRT was prolonged from 90 to 150 min, the anaerobic polyhydroxyalkanoate (PHA) synthesis was decreased by 15.3%. Moreover, the ineffective PHA consumption occurred in anaerobic phases and contributed to an increased NO 2 ? -N accumulation and higher free nitrous acid (FNA) concentrations (?0.001–0.0011 mg HNO2-N/L) in the subsequent anoxic phases, causing a severe inhibition on anoxic P-uptake and denitrification. Accordingly, the total nitrogen (TN) and total phosphorus (TP) removal efficiencies dropped by approximately 6.3% and 85.5%, respectively; and the ratio of anoxic N2O-N production to TN removal increased by approximately 3.8%. The fluorescence in situ hybridization (FISH) analysis revealed that the sludge was mainly dominated by Accumulibacter (62.0% (SEmean = 1.5%)). In conclusion, the short-term excessive anaerobic reaction time negatively impacted denitrifying P removal performance and stimulated more N2O production, and its effect on P removal was more obvious than that on nitrogen removal.  相似文献   

16.
Aerobic composting is a method for the sanitary disposal of human feces as is used in bio-toilet systems. As the products of composting can be utilized as a fertilizer, it would be beneficial if the composting conditions could be more precisely controlled for the retention of fecal nitrogen as long as possible in the compost. In this study, batch experiments were conducted using a closed aerobic thermophilic composting reactor with sawdust as the bulk matrix to simulate the condition of a bio-toilet for the sanitary disposal of human feces. Attention was paid to the characteristics of nitrogen transformation. Under the controlled conditions of temperature at 60°C, moisture content at 60%,anda continuous air supply, more than 70% fecal organic removal was obtained, while merely 17% fecal nitrogen loss was observed over a two-week composting period. The nitrogen loss was found to occur mainly in the first 24 h with the rapid depletion of inorganic nitrogen but with an almost unchanged organic nitrogen content. The fecal NH4-N which was the main component of the inorganic nitrogen ( > 90%) decreased rapidly in the first day, decreased at a slower rate over the following days, and finally disappeared entirely. The depletion of NH4-N was accompanied by the accumulation of NH3 gas in the ammonia absorber connected to the reactor. A mass balance between the exhausted NH3 gas and the fecal NH4-N content in the first 24 hours indicated that the conversion of ammonium into gaseous ammonia was the main reason for nitrogen loss. Thermophilic composting could be considered as a way to keep a high organic nitrogen content in the compost for better utilization as a fertilizer.  相似文献   

17.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

18.
Algal biofilmtechnology is a new and advanced wastewater treatment method. Experimental study on removing nitrogen and phosphorus from simulated wastewater using algal biofilm under the continuous light of 3500 Lux in the batch and continuous systems was carried out in this paper to assess the performance of algal biofilm in removing nutrients. The results showed that the effect of removing nitrogen and phosphorus by algal biofilm was remarkable in the batch system. The removal efficiencies of total phosphorus (TP), total nitrogen (TN), ammonia-nitrogen (NH3-N), and chemical oxygen demand (COD) reached 98.17%, 86.58%, 91.88%, and 97.11%, respectively. In the continuous system, hydraulic retention time (HRT) of 4 days was adopted; the effects of removing TP, TN, NH3-N, and COD by algal biofilm were very stable. During a run of 24 days, the removal efficiencies of TP, TN, NH3-N, and COD reached 95.38%, 83.93%, 82.38%, and 92.31%, respectively. This study demonstrates the feasibility of removing nitrogen and phosphorus from simulated wastewater using algal biofilm.  相似文献   

19.
COD对颗粒污泥厌氧氨氧化反应性能的影响   总被引:8,自引:1,他引:8  
研究了COD对颗粒污泥厌氧氨氧化反应的影响,并对颗粒污泥的厌氧氨氧化脱氮性能进行了分析.厌氧颗粒污泥取自实验室长期运行的EGSB生物脱氮反应器,实验用水为人工配水,以葡萄糖为有机碳源;主要考察了COD对NH4 -N、NO2--N、NO3--N和TN去除的影响.结果表明:当进水不含COD时,反应器对NH4 -N、NO2--N和NO3--N和TN的去除率分别为12.5%、29.1%、16.1%和16.3%;当COD浓度分别为200mg/L、350mg/L和550mg/L时,反应器对NH4 -N的去除率分别为14.2%、14.2%和23.7%,对NO2--N的去除率均接近100%,对NO3--N的去除率分别为94.5%、86.6%和84.2%,对TN的去除率分别为50.7%、46.9%和50.4%,COD去除率分别为85%、66%和60%.分析发现,在反应初期,氨氮的去除主要通过厌氧氨氧化过程实现,随着反应的进行,反硝化菌活性逐渐提高,传统的反硝化过程占优势.同时还观察到,在反应初期COD对氨氮去除的抑制作用非常明显.图2参21  相似文献   

20.
The aim of this study was to examine the production of nanoscale ions via the liquid phase reduction method and the effectiveness of the removal of nitrate nitrogen (NO3?–N) as well as measure the products and kinetics of the reactions. The nanoparticles obtained were approximately 50 nm in diameter and the main component was iron (Fe). This custom-made nanoscale Fe was highly positively charged, and reacted rapidly with NO3?–N in oxygen-free and neutral conditions at room temperature. A 90% removal rate was achieved when the reaction occurred for 30 min in simulation sample water with vigorous shaking at 250 r/min at NO3?–N concentrations of 30, 50, 80 or120 mg N/L. The nanometer Fe dosage was maintained throughout the experiment at 4 g/L. A first-order kinetics equation was applied to the obtained experimental data which followed a pseudo first-order reaction. Data demonstrated that the removal of nitrate nitrogen from polluted groundwater using a nanoscale Fe iron was effective and rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号