首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
城市地表汞含量及释放通量影响因素分析   总被引:5,自引:1,他引:5  
测定了长春市不同类型地表汞含量及其释放通量,分析了地表汞释放通量的影响因素。研究结果表明,不同地表土样的汞含量存在很大的差异;煤炭堆放地和沥青地地表汞含量较高,应引起足够的重视。地表汞释放通量受地表汞含量、地表类型、降水、太阳辐射等因素的影响。降水期间或降水后期地表汞释放通量明显增加。可见,地表汞释放是一个动态过程,随时间和空间而变化。  相似文献   

2.
城市地表汞释放通量时空特征分析   总被引:3,自引:1,他引:3  
方凤满  王起超 《环境化学》2004,23(1):109-110
大量研究证实土壤中的汞可以释放到大气中 ,是区域汞多介质环境污染的重要特征之一 .城市是一种特殊的人工生态系统 ,地表覆盖类型与森林土壤存在很大差异 ,其地表汞释放的研究对了解汞的多介质循环有重要意义 ,本文测定了长春市七种不同地表类型的汞释放 ,并分析了其释放规律 .1 样品的采集与测定在长春市区范围内 ,选择七种不同的地表类型 :煤炭堆放地 ,沥青地面 (公路 ) ,裸地 ,草地 ,市区森林土壤 ,郊区森林土壤 ,郊区空旷地 .在不同的气象条件下测定土壤挥发性汞释放通量 .同时 ,采集大气样品与土样 ,测定大气温度、相对湿度等气象参…  相似文献   

3.
利用Tekran 2537A和Lumex RA-915汞分析仪分别对生活垃圾填埋场排气筒、填埋场内部的气态总汞变化规律进行了分析,结果表明,填埋场排气筒中气态总汞含量呈现明显的昼夜变化规律,白天高于夜间,并于午间达到峰值。气象条件对汞的释放过程有重要影响,光照强度与排气筒中气态总汞含量的相关性明显。受填埋场内部物理、化学、生物作用的影响,填埋场内部填埋气的汞浓度明显高于排气筒中填埋气的汞浓度。填埋场内部气态总汞变化规律为:植被覆盖区域明显低于无植被覆盖区域,表明有效的绿化措施对于控制填埋场汞污染具有重要意义。  相似文献   

4.
汞是引人注目的全球性污染物,植被叶片吸收是大气汞的主要去除途径之一.然而,当前对于大气-植被叶片汞通量交换过程及吸收后的汞在植被体内的归趋等认识尚有不明确之处.本文利用单一大气汞同位素标记技术,测定了大气汞浓度为0、2、5、10 ng·m~(-3)时,C3植物水稻与C4植物玉米叶片汞交换通量的变化特征,并分析了标记的汞同位素在植被体中根-茎-叶的分布比例.结果表明:(1)水稻和玉米叶片汞的沉降通量与大气汞浓度呈显著正相关关系;(2)植物叶片汞的沉降通量有明显的昼夜变化,水稻和玉米的吸收通量白天均高于晚上;(3)玉米对大气汞的补偿点白天为0.63 ng·m~(-3),夜间为2.85 ng·m~(-3);水稻白天为1.24 ng·m~(-3),夜间为1.32 ng·m~(-3),水稻对大气汞的富集能力强于玉米,但二者的补偿点均显著低于国内大气汞浓度;(4)植被从大气吸收的汞主要集中在植物地上部,水稻叶片分布88.92%,茎中分布11.08%,而玉米叶片分布90.95%,茎中分布7.09%,根中分布1.96%.这些结果表明,农田系统的植被能富集大气中的汞,并主要贮存在叶片内部,向茎、根迁移量较少,是大气汞的重要汇.上述结论为进一步估算中国农田系统的大气汞汇与认识汞在大气-叶片-茎-根-土壤中循环提供了科学依据.  相似文献   

5.
袁莉  何品晶  瞿贤  邵立明 《环境化学》2007,26(5):662-665
以生活垃圾填埋场渗滤液和粘壤土为实验材料,研究了不同的渗滤液灌溉量、灌溉后土壤中矿物氮含量和反硝化酶活性对粘壤土N2O释放的影响.结果表明:渗滤液灌溉可促进土壤中N2O的释放,投加渗滤液的土壤样品N2O的释放通量是投加(NH4)2SO4溶液的2-3倍.粘壤土含水率为25%并且保持氧含量的条件下,渗滤液灌溉土壤后,土壤中N2O主要在硝化过程中产生.相关性统计分析表明:N2O释放通量与NO-2和渗滤液灌溉量呈显著正相关(分别为r=0.928,p<0.001;r=0.425,P<0.05),而与土壤中NO-3和反硝化酶活性无显著相关性.  相似文献   

6.
鼎湖山针阔叶混交林地表CH4通量   总被引:1,自引:0,他引:1  
用静态箱-气相色谱法对鼎湖山针阔叶混交林的地表CH4通量进行了为期一年的原位观测和研究.结果表明,该林型土壤总体为大气CH4的吸收汇,通量年变化范围60~-120 μg·m-2·h-1,在雨季向旱季过渡的9、10月份,土壤对CH4的吸收较为强烈,而在冬季的1月份,吸收通量最小;凋落物层对该林型地表CH4的吸收没有明显的阻隔作用;多元回归分析发现CH4通量与地下5 cm温度显著相关,尤其是在土壤湿度变化不大的旱季,土壤表层温度为影响CH4通量的主导因子.  相似文献   

7.
对利用矿化垃圾构建生物覆盖层以削减填埋场温室气体的释放问题进行了深入研究,分析了环境因素对CH4释放的作用,考察了作为生物覆盖层材料的矿化垃圾的厚度变化对CH4氧化的影响。结果表明,温度为5~45℃时,矿化垃圾对CH4的氧化速率平均值分别约为黏性土和砂性土的2.35和4.71倍,CH4氧化速率随温度的升高而增加,并在35℃时达到最大值。当含水率w为16%~24%时,纯矿化垃圾覆盖层、半矿化垃圾覆盖层和砂性土覆盖层CH4氧化能力均达到最大。砂性土覆盖层和半矿化垃圾覆盖层CH4释放通量平均值分别为纯矿化垃圾覆盖层的329.8倍(P0.05)和91.7倍(P0.05),添加矿化垃圾填料会增加覆盖层N2O释放通量,纯矿化垃圾覆盖层N2O(以N计)释放通量平均值分别为半矿化垃圾覆盖层和砂性土覆盖层的2.1倍(P0.05)和3.5倍(P0.05)。  相似文献   

8.
对利用矿化垃圾构建生物覆盖层以削减填埋场温室气体的释放问题进行了深入研究,分析了环境因素对CH4释放的作用,考察了作为生物覆盖层材料的矿化垃圾的厚度变化对CH4氧化的影响.结果表明,温度为5~45℃时,矿化垃圾对CH4的氧化速率平均值分别约为黏性土和砂性土的2.35和4.71倍,CH4氧化速率随温度的升高而增加,并在35℃时达到最大值.当含水率w为16% ~ 24%时,纯矿化垃圾覆盖层、半矿化垃圾覆盖层和砂性土覆盖层CH4氧化能力均达到最大.砂性土覆盖层和半矿化垃圾覆盖层CH4释放通量平均值分别为纯矿化垃圾覆盖层的329.8倍(P<0.05)和91.7倍(P<0.05),添加矿化垃圾填料会增加覆盖层N2O释放通量,纯矿化垃圾覆盖层N2O(以N计)释放通量平均值分别为半矿化垃圾覆盖层和砂性土覆盖层的2.1倍(P<0.05)和3.5倍(P<0.05).  相似文献   

9.
以太湖梅梁湾湖区为研究对象,考察水面上空磷化氢浓度和水-气界面磷化氢释放通量的习变化.结果表明,白天大气中磷化氢浓度(7.39±7.00)ng·m-3显著低于夜间(37.05±22.74)ng·m-3,光照是影响大气中磷化氢浓度的主要因素.磷化氢通量全天正负交替,白天平均通量(11.41±23.76)ng·m-2·h-1,水体为磷化氢的释放源;夜间平均通量为(-37.62±26.45)ng·m-2·h-1,水体表现为磷化氢的汇;一天内平均日变化为(-13.11±35.04)ng·m-2·h-1,磷化氢总体为从大气向水体迁移的过程.磷化氢通量与水温显著正相关,而与大气中磷化氢浓度显著负相关.相关性分析表明磷化氢与温室气体(甲烷、二氧化碳和氧化亚氮)均呈现负相关.  相似文献   

10.
土壤汞污染研究进展   总被引:4,自引:0,他引:4  
方凤满  王起超 《生态环境》2000,9(4):326-329
对国内外学者近些年来对土壤汞污染研究的工作进展作了系统的综述。主要包括土壤汞污染的途径、迁移方式和治理办法。其中重点介绍了大气汞的干湿沉降、土壤汞的释放及生物修复治理土壤汞污染。最后,还介绍了土壤汞形态的分析方法以及土壤挥发性汞释放通量的测量方法。  相似文献   

11.
Atmospheric mercury emissions from polluted gold mining areas (Venezuela)   总被引:1,自引:0,他引:1  
Soil, waste rock and mud from mercury-gold amalgamation mining areas of El Callao (Venezuela) are highly enriched in Hg (0.5–500 μg g−1) relative to natural background concentrations (<0.1 μg g−1). Mercury fluxes to the atmosphere from twelve polluted sites of this area were measured in situ (6 a.m. to 8 p.m.) using a Plexiglas flux chamber connected to a portable mercury analyzer (model RA-915+; Lumex, St. Petersburg, Russia). Mercury fluxes ranged between 0.65 and 420.1 μg m−2 h−1, and the average flux range during the diurnal hours␣was 9.1–239.2 μg m−2 h−1. These flux values are five orders of magnitude higher than both reported world background Hg fluxes (1–69 ng m−2 h−1) and the regional values, which are in the range 2–10 ng m−2 h−1. The flux results obtained in this study are, however, similar to those measured at Hg polluted sites such as chloro-alkali plants or polymetallic ore mining districts (>100,000 ng m−2 h−1). The results from this study also show that Hg emissions from the soil are influenced by solar radiation, soil temperature and soil Hg concentration. Our data suggest that solar radiation may be the dominant factor affecting Hg° emission since the major species of mercury in polluted soil is Hg° (85–97% of total Hg). The simple release of Hg° vapor is probably the dominant process occurring with incident light in the field. The apparent activation energy for mercury emission indicates that the volatilization of mercury mainly occurred as a result of the vaporization of elemental mercury in soil. The degree of Hg emission differed significantly among the soil sites studied, which may be due to variations in soil texture, organic matter content and soil compaction.  相似文献   

12.
结合中国地区的汞排放,利用引入大气汞化学反应机制和干沉降模型的区域大气环境模式系统(Regional Atmospheric Environment Model System,Reg AEMS),对中国地区大气汞化物浓度和干沉降通量的时空分布特征进行模拟研究。研究结果表明,中国地区年均气态零价汞Hg0、氧化汞Hg O、氢氧化汞Hg(OH)2、氯化汞Hg Cl2和颗粒态汞HgP的沉降量分布类似。除西部、西北部地区Hg0的浓度较低外(0.5 ng·m-3),其他地区均高于全球背景浓度。各类汞化物浓度的季节变化明显,8月最低,2、3月最高。一次汞源区附近汞浓度随高度递减,在离源较远的地区,高层汞浓度较高。气态零价汞的干沉降速度的季节变化最明显,其干沉降通量在夏季最高。模拟区域中气态零价汞、氧化汞和颗粒态汞的年干沉降量分别为163.9、7.43和32.2 t。  相似文献   

13.
The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.  相似文献   

14.
Mercury emissions from forest fires in countries bordering the Mediterranean Sea have been estimated on the basis of satellite observations for the year 2006. The assessment has been done by means of the Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD12Q1, MOD14A2, MOD15A2, MOD44B). Estimates show that wild fires have burnt 310,268 ha in the Region, affecting by 45% the Mixed Forest and by 37% the Evergreen Needleleaf Forest and the Evergreen Broadleaf Forest. The amount of biomass burned was about 66,000 Mg for the Evergreen Needleleaf Forest, 72,000 Mg for the Evergreen Broadleaf Forest and 196,000 Mg for the Mixed Forest. The total amount of mercury released to the atmosphere in the Mediterranean countries accounted for 4.3 Mg year−1 with Italy, France, Austria, Bulgaria, Algeria, Spain and Croatia being the most contributing countries with annual emission ranging from 330 to 970 kg year−1. The maximum release of Gaseous Elemental Mercury (GEM) and particulate mercury (Hg(p)) in the region occurred in July with 1,218 kg. The uncertainty of our estimates is comparable with that associated to current assessments of mercury emissions from major industrial sources.  相似文献   

15.
A dynamic flux chamber has been used to estimate fluxes of mercury over different types of surfaces in an abandoned open‐cut mine of Tongren prefecture, Guizhou province, China during spring and summer of 1996. The highest fluxes were obtained over cinnabar slag and contaminated soils, whereas the emissions above cinnabar ore were substantially lower. These fluxes was scaled up to estimate the contribution of mercury emissions to air from mercury wastes, compared to anthropogenic activities in the province of Guizhou, China. Atmospheric mercury concentrations measured were enhanced in the mining area (<1.3 μg m‐3) compared to regional background sites (1.8–5.1 ng m‐3). The spreading of mercury was estimated by using biological and geological samples. Moss bags have been employed to estimate long‐time dry‐ and wet‐deposition to this area.  相似文献   

16.
Measuring Hg levels of water sediments is one of the primary routes to assess the trend of the contamination. Little work has been carried out in the Yangtze Delta to track the trend of mercury contamination caused by Shanghai, which is one of the fastest growing economies in the world today. The mercury concentration in the sedimentary cores from Dianshan Lake, Shanghai is studied here. Results show that mercury transported to Dianshan Lake from emissions of coal combustion and non-coal sources in the Yangtze Delta was greater after 1979. We found also that before 1979 mercury levels changed less with time than after 1979. Before 1967 Hg levels were more variable than in the 1970s. Moreover, the mercury dissolved in river water and bound to particles of water that flow past downtown Shanghai is different from that observed in Dianshan Lake, which is located in upper Shanghai. This indicates that atmospheric Hg deposition is probably the main source of mercury in Dianshan Lake. These results are important for the establishment of environmental protections and pollution treatment proposals for mercury in similar areas of the world, as well as in Shanghai.  相似文献   

17.
为研究珠三角某城市生活垃圾焚烧厂周边汞污染空间格局及影响因素,于2014年1月,采集了马占相思、荔枝和芒萁等优势种的叶片样品192份,并同步采集相应表层土壤样品64份,采用冷原子吸收法测定样品总汞含量,并运用ADMS模型对2013年大气汞年均浓度进行模拟,分析了植物叶片汞含量与土壤和大气汞浓度之间的关系。结果表明,植物叶片的汞含量范围为0.0029~0.1741 mg·kg-1,荔枝叶片汞含量最高,为(0.0766±0.0395)mg·kg-1,其次为芒萁((0.0599±0.0370)mg·kg-1)和马占相思((0.0556±0.0396)mg·kg-1)。植物叶片汞含量与土壤汞含量无显著相关性,而受风向和距污染源的距离影响显著,与ADMS模拟的大气年均汞浓度存在显著相关性。研究表明,植物叶片汞含量变化与烟气扩散浓度的空间分异格局基本吻合,叶片对大气中汞的吸收在植物与环境的汞交换中占据主导地位,对叶片的生物监测可以反映城市生活垃圾焚烧厂汞排放对生态环境的实际影响。  相似文献   

18.
Estimated anthropogenic Hg emission was 11.9 tons in Pearl River Delta for 2014. Quantifying contributions of emission sources helps to provide control strategies. More attentions should be paid to Hg deposition around the large point sources. Power plant, industrial source and waste incinerator were priorities for control. A coordinated regional Hg emission control was important for controlling pollution. We used CMAQ-Hg to simulate mercury pollution and identify main sources in the Pearl River Delta (PRD) with updated local emission inventory and latest regional and global emissions. The total anthropogenic mercury emissions in the PRD for 2014 were 11,939.6 kg. Power plants and industrial boilers were dominant sectors, responsible for 29.4 and 22.7%. We first compared model predictions and observations and the results showed a good performance. Then five scenarios with power plants (PP), municipal solid waste incineration (MSWI), industrial point sources (IP), natural sources (NAT), and boundary conditions (BCs) zeroed out separately were simulated and compared with the base case. BCs was responsible for over 30% of annual average mercury concentration and total deposition while NAT contributed around 15%. Among the anthropogenic sources, IP (22.9%) was dominant with a contribution over 20.0% and PP (18.9%) and MSWI (11.2%) ranked second and third. Results also showed that power plants were the most important emission sources in the central PRD, where the ultra-low emission for thermal power units need to be strengthened. In the northern and western PRD, cement and metal productions were priorities for mercury control. The fast growth of municipal solid waste incineration were also a key factor in the core areas. In addition, a coordinated regional mercury emission control was important for effectively controlling pollution. In the future, mercury emissions will decrease as control measures are strengthened, more attention should be paid to mercury deposition around the large point sources as high levels of pollution are observed.  相似文献   

19.

Mercury (Hg) concentrations were measured in 26 Scottish single malt whiskies, and all found to be very low (<10 ng L−1), posing no threat to human health through reasonable levels of consumption. However, a significant south-to-north declining gradient in Hg concentrations was observed reflecting that reported for atmospheric deposition. We speculate that this gradient could be due to a combination of contemporary deposition and the legacy of industrial mercury emissions and deposition over the last 200 years affecting concentrations in local waters used in whisky production. As UK atmospheric emissions of mercury have declined by 90 % since the 1970s, we suggest that whisky being produced today should have even lower Hg concentrations when consumed in 10- to 15-years time. This reduction may be compromised by the remobilisation of contaminants stored in catchment soils being transferred to source waters, but is very unlikely to raise the negligible health risk due to Hg from Scottish single malt whisky consumption.

  相似文献   

20.
Five centuries of mining and processing of mercury ore in the Idrija area have resulted in widespread contamination of different environmental compartments. Environmental impacts on a regional and local scale, caused by atmospheric emissions from the Idrija ore roasting plant, were established in the investigations of mercury spatial distribution in soil and attic dust in 160 km(2) area. Very high values were determined in the Idrijca River valley, and they decrease exponentially with the distance from Idrija. Mercury concentrations in attic dust are higher than in surrounding soils and the attic dust/soil ratio changes with distance. Measurements of mercury in the air confirmed widespread dispersion of mercury and showed highly elevated mercury concentrations around roasting plant and mine ventilation shaft. Beside, systematic monitoring of mercury contents in the stream sediments has demonstrated that huge amounts of mercury are stored in areas where ancient overbank sediments were deposited, and there was no decrease in mercury concentration in active sediments during the last 15 years. Recently, interesting and extremely polluted locations of historical small-scale roasting sites in the Idrija surroundings were discovered. Ongoing geochemical study aims to determine the extreme pollution and significance of these sites for wider contamination of soils and aquatic systems. Presented studies have shown that Hg mining in Idrija caused intense pollution of local and regional environment including the aquatic systems in the Gulf of Trieste, which is seen as the final sink of a major part of the Hg stored in soils and river sediments in the Idrija area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号