首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
• Regional transportation contributed more than local emissions during haze episodes. • Short-range regional transportation contributed the most to the PM2.5 in the OIAs. • Low wind speeds and low PBLHs led to higher local contributions to Beijing. The 2022 Winter Olympics is scheduled to take place in Beijing and Zhangjiakou, which were defined as OIAs (Olympic infrastructure areas) in this study. This study presents the characteristics and source apportionment of PM2.5 in the OIAs, China. The entire region of mainland China, except for the OIAs, was divided into 9 source regions, including four regions in the BTH(Beijing-Tianjin-Hebei) region, the four provinces surrounding the BTH and the remaining areas. Using CAMx/PSAT, the contributions of the nine regions to the PM2.5 concentration in the OIAs were simulated spatially and temporally. The simulated source apportionment results showed that the contribution of regional transportation was 48.78%, and when PM2.5 concentration was larger than 75 μg/m3 central Hebei was the largest contributor with a contribution of 19.18%, followed by Tianjin, northern Hebei, Shanxi, Inner Mongolia, Shandong, southern Hebei, Henan and Liaoning. Furthermore, the contribution from neighboring regions of the OIAs was 47.12%, which was nearly twice that of long-range transportation. Haze episodes were analyzed, and the results presented the importance of regional transportation during severe PM2.5 pollution periods. It was also found that they were associated with differences in pollution sources between Zhangjiakou and Beijing. Regional transportation was the main factor affecting PM2.5 pollution in Zhangjiakou due to its low local emissions. Stagnant weather with a low planetary boundary layer height and a low wind velocity prevented the local emitted pollutants in Beijing from being transported outside, and as a result, local emissions constituted a larger contribution in Beijing.  相似文献   

2.
• The Large scale Urban Consumption of energY model was updated and coupled with WRF. • Anthropogenic heat emissions altered the precipitation and its spatial distribution. • A reasonable AHE scheme could improve the performance of simulated PM2.5. • AHE aggravated the O3 pollution in urban areas. Anthropogenic heat emissions (AHE) play an important role in modulating the atmospheric thermodynamic and kinetic properties within the urban planetary boundary layer, particularly in densely populated megacities like Beijing. In this study, we estimate the AHE by using a Large-scale Urban Consumption of energY (LUCY) model and further couple LUCY with a high-resolution regional chemical transport model to evaluate the impact of AHE on atmospheric environment in Beijing. In areas with high AHE, the 2-m temperature (T2) increased to varying degrees and showed distinct diurnal and seasonal variations with maxima in night and winter. The increase in 10-m wind speed (WS10) and planetary boundary layer height (PBLH) exhibited slight diurnal variations but showed significant seasonal variations. Further, the systematic continuous precipitation increased by 2.1 mm due to the increase in PBLH and water vapor in upper air. In contrast, the precipitation in local thermal convective showers increased little because of the limited water vapor. Meanwhile, the PM2.5 reduced in areas with high AHE because of the increase in WS10 and PBLH and continued to reduce as the pollution levels increased. In contrast, in areas where prevailing wind direction was opposite to that of thermal circulation caused by AHE, the WS10 reduced, leading to increased PM2.5. The changes of PM2.5 illustrated that a reasonable AHE scheme might be an effective means to improve the performance of PM2.5 simulation. Besides, high AHE aggravated the O3 pollution in urban areas due to the reduction in NOx.  相似文献   

3.
• The sampling was conducted in city on the Yunnan-Guizhou Plateau for one year. • The groups of PAHs revealed their different environmental fates and migration paths. • Seasonal biomass burning could affect the concentration by long-distance transport. • Industrial sources and traffic emissions were the main contributor of PAHs. • Living in industrial areas or winter had higher health risk by exposure PAHs in PM2.5. Monthly particle-phase ambient samples collected at six sampling locations in Yuxi, a high-altitude city on the edge of Southeast Asia, were measured for particle-associated PAHs. As trace substances, polycyclic aromatic hydrocarbons (PAHs) are susceptible to the influences of meteorological conditions, emissions, and gas-particulate partitioning and it is challenging job to precise quantify the source and define the transmission path. The daily concentrations of total PM2.5-bound PAHs ranged from 0.65 to 80.76 ng/m3, with an annual mean of 11.94 ng/m3. Here, we found that the concentration of PM2.5-bound PAHs in winter was significantly higher than that in summer, which was mainly due to source and meteorology influence. The increase of fossil combustion and biomass burning in cold season became the main contributors of PAHs, while precipitation and low temperature exacerbated this difference. According to the concentration variation trend of PM2.5-bound PAHs and their relationship with meteorological conditions, a new grouping of PAHs is applied, which suggested that PAHs have different environmental fates and migration paths. A combination of source analysis and trajectory model supported local sources from combustion of fossil fuel and vehicle exhaust contributed to the major portion on PAHs in particle, but on the Indochina Peninsula the large number of pollutants emitted by biomass burning during the fire season would affect the composition of PAHs through long-range transporting. Risk assessment in spatial and temporal variability suggested that citizens living in industrial areas were higher health risk caused by exposure the PM2.5-bound PAHs than that in other regions, and the risk in winter was three times than in summer.  相似文献   

4.
•Annual mean PM2.5 in Shijiazhuang were 87, 95, and 82 µg/m3 in 2015–2017. •Health risk of cardiovascular system was higher than respiratory system. •Premature mortality attributed to PM2.5 was 5088 people in 2017. •ΔMort and YLL reduced by 84.2% and 84.6% when PM2.5 reduced to 10 µg/m3. •Health risks due to PM2.5 were severe in Shijiazhuang in 2015–2017. Shijiazhuang is one of the cities in the North China Plain. In recent decades, this city has experienced high levels of fine particulate matter (PM2.5), which have potentially significant effects on human health. In this study, the health effects of PM2.5 exposure in Shijiazhuang were estimated by applying an integrated exposure-response model. Premature mortality, years of life lost (YLL), and the mortality benefits linked to reduced levels of PM2.5 were quantified for the period 2015–2017. In 2015, 2016, and 2017, cerebrovascular diseases caused the highest premature mortality (2432, 2449, and 2483, respectively), followed by ischemic heart diseases (1391, 1479, and 1493, respectively), lung cancer (639,660, and 639, respectively), and chronic obstructive pulmonary diseases (533, 519, and 473, respectively). Notably, the total number of premature deaths caused by PM2.5 exposure in Shijiazhuang in 2015, 2016, and 2017 were 4994, 5107, and 5088, respectively. Moreover, the YLL in the same years were 47001, 47880 and 47381, respectively. Interestingly, the YLL per 1000 females was lower than that per 1000 males. Finally, we noted that premature mortality and YLL decreased by 84.2% and 84.6% when the PM2.5 levels diminished to 10 µg/m3. Overall, the results of this study improve our understanding of how high PM2.5 concentrations affect human health and suggest the application of more stringent measures in Shijiazhuang to alleviate the associated health risks.  相似文献   

5.
• Characteristics and interannual variation of aerosol pollution are illustrated. • Mechanisms of secondary aerosol formation in winter haze of North China are reviewed. • Directions in future studies of secondary aerosol formation are provided. Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei (BTH) region (China), exerting profound impacts on air quality, visibility, and human health. The Chinese Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in the annual mean PM2.5 concentration over this region. However, the level of secondary aerosols during heavy haze episodes showed little decrease during this period. During heavy haze episodes, the concentrations of secondary aerosol components, including sulfate, nitrate and secondary organics, in aerosol particles increase sharply, acting as the main contributors to aerosol pollution. To achieve effective control of particle pollution in the BTH region, the precise and complete secondary aerosol formation mechanisms have been investigated, and advances have been made about the mechanisms of gas phase reaction, nucleation and heterogeneous reactions in forming secondary aerosols. This paper reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region, lays out the challenges in haze formation studies, and provides implications and directions for future research.  相似文献   

6.
• The Taihang Mountains was the boundary between high and low pollution areas. • There were one high value center for PM2.5 pollution and two low value centers. • In 2004, 2009 and after 2013, PM2.5 concentration was relatively low. Over the past 40 years, PM2.5 pollution in North China has become increasingly serious and progressively exposes the densely populated areas to pollutants. However, due to limited ground data, it is challenging to estimate accurate PM2.5 exposure levels, further making it unfavorable for the prediction and prevention of PM2.5 pollutions. This paper therefore uses the mixed effect model to estimate daily PM2.5 concentrations of North China between 2003 and 2015 with ground observation data and MODIS AOD satellite data. The tempo-spatial characteristics of PM2.5 and the influence of meteorological elements on PM2.5 is discussed with EOF and canonical correlation analysis respectively. Results show that overall R2 is 0.36 and the root mean squared predicted error was 30.1 μg/m3 for the model prediction. Our time series analysis showed that, the Taihang Mountains acted as a boundary between the high and low pollution areas in North China; while the northern part of Henan Province, the southern part of Hebei Province and the western part of Shandong Province were the most polluted areas. Although, in 2004, 2009 and dates after 2013, PM2.5 concentrations were relatively low. Meteorological/topography conditions, that include high surface humidity of area in the range of 34°‒40°N and 119°‒124°E, relatively low boundary layer heights, and southerly and easterly winds from the east and north area were common factors attributed to haze in the most polluted area. Overall, the spatial distribution of increasingly concentrated PM2.5 pollution in North China are consistent with the local emission level, unfavorable meteorological conditions and topographic changes.  相似文献   

7.
• The impact of air pollution on AMI/COPD hospital admissions were examined. • Significant connection was found between air pollutants and AMI/COPD in Qingdao. • Nonlinearity exists between air pollution and AMI/COPD hospital admissions. Air pollution has been widely associated with adverse effects on the respiratory and cardiovascular systems. We investigated the relationship between acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and air pollution exposure in the coastal city of Qingdao, China. Air pollution in this region is characterized by inland and oceanic transportation sources in addition to local emission. We examined the influence of PM2.5, PM10, NO2, SO2, CO and O3 concentrations on hospital admissions for AMI and COPD from October 1, 2014, to September 30, 2018, in Qingdao using a Poisson generalized additive model (GAM). We found that PM2.5, PM10, NO2, SO2 and CO exhibited a significant short-term (lag 1 day) association with AMI in the single-pollutant model among older adults (>65 years old) and females, especially during the cold season (October to March). In contrast, only NO2 and SO2 had clear cumulative lag associations with COPD admission for females and those over 65 years old at lag 01 and lag 03, respectively. In the two-pollutant model, the exposure-response relationship fitted by the two-pollutant model did not change significantly. Our findings indicated that there is an inflection point between the concentration of certain air pollutants and the hospital admissions of AMI and COPD even under the linear assumption, indicative of the benefits of reducing air pollution vary with pollution levels. This study has important implications for the development of policy for air pollution control in Qingdao and the public health benefits of reducing air pollution levels.  相似文献   

8.
• Urban aerosols harbour diverse bacterial communities in Shanghai. • The functional groups were associated with nitrogen, carbon, and sulfur cycling. • Temperature, SO2, and wind speed were key drivers for the bacterial community. Airborne bacteria play key roles in terrestrial and marine ecosystems and human health, yet our understanding of bacterial communities and their response to the environmental variables lags significantly behind that of other components of PM2.5. Here, atmospheric fine particles obtained from urban and suburb Shanghai were analyzed by using the qPCR and Illumina Miseq sequencing. The bacteria with an average concentration of 2.12 × 103 cells/m3, were dominated by Sphingomonas, Curvibacter, Acinetobacter, Bradyrhizobium, Methylobacterium, Halomonas, Aliihoeflea, and Phyllobacterium, which were related to the nitrogen, carbon, sulfur cycling and human health risk. Our results provide a global survey of bacterial community across urban, suburb, and high-altitude sites. In Shanghai (China), urban PM2.5 harbour more diverse and dynamic bacterial populations than that in the suburb. The structural equation model explained about 27%, 41%, and 20%–78% of the variance found in bacteria diversity, concentration, and discrepant genera among urban and suburb sites. This work furthered the knowledge of diverse bacteria in a coastal Megacity in the Yangtze river delta and emphasized the potential impact of environmental variables on bacterial community structure.  相似文献   

9.
10.
• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them. • Ag NPs inhibited the growth of aquatic plants under both 5- and 60-day exposure. • CeO2 NPs had positive/negative impact on plant in 5/60-day exposure, respectively. • TiO2 NPs presence could enhance the photosynthesis and increase the plant biomass. • The ENPs changed plant activity, which resulted in changes of wetland performance. Engineered nanoparticles (ENPs) threaten the environment through wastewater discharging. Generally, constructed wetlands (CWs) are efficient methods for ENPs removal. However, the biotoxicity of ENPs on plants in CWs is unclear. Here, we investigated the distribution and bio-impacts of different ENPs (Ag NPs, TiO2 NPs, and CeO2 NPs) in plants under 5- and 60-day exposure to 1 and 50 mg/L concentrations. Results showed that ENPs appeared in the vascular bundle and mesophyll cell space, which induced the variation in antioxidase activities (e.g., superoxide dismutase [SOD], peroxidase [POD], and catalase [CAT] activities) as well as overproduction of malondialdehyde (MDA). Additionally, Ag NPs inhibited photosynthesis rate and root activity during two exposure phases. CeO2 NPs had positive and negative impacts on plants in 5- and 60-day exposure, respectively. Inversely, TiO2 NPs enhanced photosynthesis and root activity under 60-day exposure. Finally, the contents of the C, N, and P elements in plants fluctuated in response to ENPs stress. All results have a positive correlation with the wetland performance under ENPs exposure except for TiO2 NPs treatment. Overall, our study systematically reveals aquatic plants' responses to ENPs and provides a reference for building ecological treatment systems to purify wastewater containing ENPs.  相似文献   

11.
PM2.5 in Chengdu showed clear seasonal and diurnal variation. 5, 5, 5 and 3 mean clusters are generated in spring, summer, autumn, and winter. Short-distance air masses are important pathways in Chengdu. Emissions within the Sichuan Basin contribute significantly to PM2.5 pollution. Long-range transport from Southern Xinjiang is a dust invasion path to Chengdu. Seasonal pattern of transport pathways and potential sources of PM2.5 in Chengdu during 2012–2013 were investigated based on hourly PM2.5 data, backward trajectories, clustering analysis, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) method. The annual hourly mean PM2.5 concentration in Chengdu was 97.4 mg·m–3. 5, 5, 5 and 3 mean clusters were generated in four seasons, respectively. Short-distance air masses, which travelled within the Sichuan Basin with no specific source direction and relatively high PM2.5 loadings (>80 mg·m–3) appeared as important pathways in all seasons. These short pathways indicated that emissions from both local and surrounding regions of Chengdu contributed significantly to PM2.5 pollution. The cities in southern Chengdu were major potential sources with PSCF>0.6 and CWT>90 mg·m–3. The northeastern pathway prevailed throughout the year with higher frequency in autumn and winter and lower frequency in spring and summer. In spring, long-range transport from southern Xinjiang was a representative dust invasion path to Chengdu, and the CWT values along the path were 30-60 mg·m–3. Long-range transport was also observed in autumn from southeastern Xinjiang along a northwesterly pathway, and in winter from the Tibetan Plateau along a westerly pathway. In summer, the potential source regions of Chengdu were smaller than those in other seasons, and no long-range transport pathway was observed. Results of PSCF and CWT indicated that regions in Qinghai and Tibet contributed to PM2.5 pollution in Chengdu as well, and their CWT values increased to above 30 mg·m-3 in winter.  相似文献   

12.
• Mitigating energy utilization and carbon emission is urgent for wastewater treatment. • MPEC integrates both solar energy storage and wastewater organics removal. • Energy self-sustaining MPEC allows to mitigate the fossil carbon emission. • MPEC is able to convert CO2 into storable carbon fuel using renewable energy. • MPEC would inspire photoelectrochemistry by employing a novel oxidation reaction. Current wastewater treatment (WWT) is energy-intensive and leads to vast CO2 emissions. Chinese pledge of “double carbon” target encourages a paradigm shift from fossil fuels use to renewable energy harvesting during WWT. In this context, hybrid microbial photoelectrochemical (MPEC) system integrating microbial electrochemical WWT with artificial photosynthesis (APS) emerges as a promising approach to tackle water-energy-carbon challenges simultaneously. Herein, we emphasized the significance to implement energy recovery during WWT for achieving the carbon neutrality goal. Then, we elucidated the working principle of MPEC and its advantages compared with conventional APS, and discussed its potential in fulfilling energy self-sustaining WWT, carbon capture and solar fuel production. Finally, we provided a strategy to judge the carbon profit by analysis of energy and carbon fluxes in a MPEC using several common organics in wastewater. Overall, MPEC provides an alternative of WWT approach to assist carbon-neutral goal, and simultaneously achieves solar harvesting, conversion and storage.  相似文献   

13.
• Light haze had little effect on bacterial communities. • Fog and heavy haze had significant effects on these communities. • Air pollution exerted a greater influence than particle size on bacterial community. Here, we report the characteristics of bacterial communities in aerosols with different particle sizes during two persistent fog and haze events in December of 2015 and 2016 in Qingdao, China. In the early stage of pollution, the accumulation of PM2.5 led to the accumulation of microorganisms, thus increasing the bacterial richness and diversity of fine particle sizes. With the persistence and aggravation of pollution, the toxic effect was strengthened, and the bacterial richness and diversity of each particle size decreased. When the particle concentration was highest, the richness and diversity were low for each particle size. Light haze had little influence on bacterial communities. The occurrence of highly polluted humid weather and heavy haze resulted in significant changes in bacterial community diversity, composition and structure, and air pollution exerted a greater influence than particle size on bacterial community structure. During persistent fog and haze events, with the increase of pollutants, bacteria associated with each particle size may be extensively involved in aerosol chemistry, but the degree of participation varies, which requires further study.  相似文献   

14.
• Distribution of ARGs in decentralized sewage facilities were investigated. • Bacitracin-ARGs were most predominant ARGs in rural wastewater. • ARGs were identified in bacterial and viral community. • ARGs of rpoB, drfE, gyrA and parC were both correlated with bacteria and phages. • More attention should be paid to the risk of spreading ARG by phages. The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG’s proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary.  相似文献   

15.
• The airborne bacteria of Mexico City are representative of urban environments. • Particle material<10 µm influenced the type and quantity of airborne bacteria. • The diversity and richness of bacteria were higher in the rainy season. • The emission & transport of airborne bacteria determine the atmosphere’s microbiome. • Bacterias as Kocuria, Paracoccus, and Staphylococcus were in the air of Mexico City. Bacteria in the air present patterns in space and time produced by different sources and environmental factors. Few studies have focused on the link between airborne pathogenic bacteria in densely populated cities, and the risk to the population’s health. Bacteria associated with particulate matter (PM) were monitored from the air of Mexico City (Mexico). We employed a metagenomic approach to characterise bacteria using the 16S rRNA gene. Airborne bacteria sampling was carried out in the north, centre, and south of Mexico City, with different urbanisation rates, during 2017. Bacteria added to the particles were sampled using high-volume PM10 samplers. To ascertain significant differences in bacterial diversity between zones and seasons, the Kruskal-Wallis, Wilcoxon tests were done on alpha diversity parameters. Sixty-three air samples were collected, and DNA was sequenced using next-generation sequencing. The results indicated that the bacterial phyla in the north and south of the city were Firmicutes, Cyanobacteria, Proteobacteria, and Actinobacteria, while in the central zone there were more Actinobacteria. There were no differences in the alpha diversity indices between the sampled areas. According to the OTUs, the richness of bacteria was higher in the central zone. Alpha diversity was higher in the rainy season than in the dry season; the Shannon index and the OTUs observed were higher in the central zone in the dry season. Pathogenic bacteria such as Kocuria, Paracoccus, and Micrococcus predominated in both seasonal times, while Staphylococcus, Corynebacterium, and Nocardioides were found during the rainy season, with a presence in the central zone.  相似文献   

16.
• Bioaerosols are produced in the process of wastewater biological treatment. • The concentration of bioaerosol indoor is higher than outdoor. • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals. • Inhalation is the main route of exposure of bioaerosol. • Both the workers and the surrounding residents will be affected by the bioaerosol. Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.  相似文献   

17.
● Increased DAAO offsets 3/4 of the decrease of DAAP in 2013–2020. ● DAAO increases are mainly due to O3 concentration increase and population aging. ● Health benefit from PM2.5 reduction after 2017 is larger than that before 2017. ● Reducing PM2.5 concentration by 1% results in 0.6% reduction of DAAP. ● Reducing O3 concentration by 1% results in 2% reduction of DAAO. PM2.5 concentration declined significantly nationwide, while O3 concentration increased in most regions in China in 2013–2020. Recent evidences proved that peak season O3 is related to increased death risk from non-accidental and respiratory diseases. Based on these new evidences, we estimate excess deaths associated with long-term exposure to ambient PM2.5 and O3 in China following the counterfactual analytic framework from Global Burden Disease. Excess deaths from non-accidental diseases associated with long-term exposure to ambient O3 in China reaches to 579 (95% confidential interval (CI): 93, 990) thousand in 2020, which has been significantly underestimated in previous studies. In addition, the increased excess deaths associated with long-term O3 exposure (234 (95% CI: 177, 282) thousand) in 2013–2020 offset three quarters of the avoided excess deaths (302 (95% CI: 244, 366) thousand) mainly due to PM2.5 exposure reduction. In key regions (the North China Plain, the Yangtze River Delta and the Fen-Wei Plain), the former is even larger than the latter, particularly in 2017–2020. Health benefit of PM2.5 concentration reduction offsets the adverse effects of population growth and aging on excess deaths attributed to PM2.5 exposure. Increase of excess deaths associated with O3 exposure is mainly due to the strong increase of O3 concentration, followed by population aging. Considering the faster population aging process in the future, collaborative control, and faster reduction of PM2.5 and O3 are needed to reduce the associated excess deaths.  相似文献   

18.
•Strong ENSO influence on AOD is found in southern China region. •Low AOD occurs in El Niño but high AOD occurs in La Niña events in southern China. •Angstrom exponent anomalies reveals the circulation pattern during each ENSO phase. •ENSO exerts large influence (70.5%) on annual variations of AOD during 2002–2020. •Change of anthropogenic emissions is the dominant driver for AOD trend (2002–2020). Previous studies demonstrated that the El Niño–Southern Oscillation (ENSO) could modulate regional climate thus influencing air quality in the low-middle latitude regions like southern China. However, such influence has not been well evaluated at a long-term historical scale. To filling the gap, this study investigated two-decade (2002 to 2020) aerosol concentration and particle size in southern China during the whole dynamic development of ENSO phases. Results suggest strong positive correlations between aerosol optical depth (AOD) and ENSO phases, as low AOD occurred during El Niño while high AOD occurred during La Niña event. Such correlations are mainly attributed to the variation of atmospheric circulation and precipitation during corresponding ENSO phase. Analysis of the angstrom exponent (AE) anomalies further confirmed the circulation pattern, as negative AE anomalies is pronounced in El Niño indicating the enhanced transport of sea salt aerosols from the South China Sea, while the La Niña event exhibits positive AE anomalies which can be attributed to the enhanced import of northern fine anthropogenic aerosols. This study further quantified the AOD variation attributed to changes in ENSO phases and anthropogenic emissions. Results suggest that the long-term AOD variation from 2002 to 2020 in southern China is mostly driven (by 64.2%) by the change of anthropogenic emissions from 2002 to 2020. However, the ENSO presents dominant influence (70.5%) on year-to-year variations of AOD during 2002–2020, implying the importance of ENSO on varying aerosol concentration in a short-term period.  相似文献   

19.
• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system. • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles. • Functional microbial communities could be enriched in coupled anaerobic system. • Possible synergistic mechanism involved in enhanced dechlorination was proposed. Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.  相似文献   

20.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号