首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low dissolved oxygen (DO) is an energy-saving condition in activated sludge process. To investigate the possible application of limited filamentous bulking (LFB) in sequencing batch reactor (SBR), two lab-scale SBRs were used to treat synthetic domestic wastewater and real municipal wastewater, respectively. The results showed that prolonging low DO aeration duration and setting pre-anoxic (anaerobic) phase were effective strategies to induce and inhibit filamentous sludge bulking, respectively. According to the sludge settleability, LFB could be maintained steadily by adjusting operation patterns. Filamentous bacteria content and sludge volume index (SVI) were likely correlated. SVI fluctuated dramatically within a few cycles when around 200 mL·g-1, where altering operation pattern could change sludge settleability in spite of the unstable status of activated sludge system. Energy consumption by aeration reduced under low DO LFB condition, whereas the nitrification performance deteriorated. However, short-cut nitrification and simultaneous nitrification denitrification (SND) were prone to take place under such conditions. When the cycle time kept constant, the anoxic (anaerobic) to aerobic time ratio was determining factor to the SND efficiency. Similarity keeping aerobic time as constant, the variation trends of SND efficiency and specific SND rate were uniform. SBR is a promising reactor to apply the LFB process in practice.  相似文献   

2.
• Effects of metabolic uncoupler TCS on the performances of GDMBR were evaluated. • Sludge EPS reduced and transformed into dissolved SMP when TCS was added. • Appropriate TCS increased the permeability and reduced cake layer fouling. • High dosage aggravated fouling due to compact cake layer with low bio-activity. The gravity-driven membrane bioreactor (MBR)system is promising for decentralized sewage treatment because of its low energy consumption and maintenance requirements. However, the growing sludge not only increases membrane fouling, but also augments operational complexities (sludge discharge). We added the metabolic uncoupler 3,3′,4′,5-tetrachlorosalicylanilide (TCS) to the system to deal with the mentioned issues. Based on the results, TCS addition effectively decreased sludge ATP and sludge yield (reduced by 50%). Extracellular polymeric substances (EPS; proteins and polysaccharides) decreased with the addition of TCS and were transformed into dissolved soluble microbial products (SMPs) in the bulk solution, leading to the break of sludge flocs into small fragments. Permeability was increased by more than two times, reaching 60–70 L/m2/h bar when 10–30 mg/L TCS were added, because of the reduced suspended sludge and the formation of a thin cake layer with low EPS levels. Resistance analyses confirmed that appropriate dosages of TCS primarily decreased the cake layer and hydraulically reversible resistances. Permeability decreased at high dosage (50 mg/L) due to the release of excess sludge fragments and SMP into the supernatant, with a thin but more compact fouling layer with low bioactivity developing on the membrane surface, causing higher cake layer and pore blocking resistances. Our study provides a fundamental understanding of how a metabolic uncoupler affects the sludge and bio-fouling layers at different dosages, with practical relevance for in situ sludge reduction and membrane fouling alleviation in MBR systems.  相似文献   

3.
We investigated the fouling performances of ultrafiltration (UF) membrane for treating in-line coagulated water in an enhanced coagulation-UF hybrid process. Then we analyzed the fouling mechanisms in the early stage of UF using mathematical models and microscopy observation methods. Finally, we discussed the impact of aeration on membrane fouling in this paper. The results showed that a two-stage of trans-membrane pressure (TMP) profile during the operation of enhanced coagulation-UF membrane was observed, and the relationship between permeability and operation time fitted well with a logarithmic curve. Membrane pores blocking and cake filtration were confirmed as main membrane fouling mechanisms using the mathematical models. The two stages of membrane fouling mechanisms were further deduced, namely, the membrane pore narrowing followed by the formation of cake layer. Membrane autopsy analysis using scanning electron microscopy (SEM) images of the membrane surface sampled from different filtration cycles also confirmed the mechanisms of pores blocking and cake filtration. Moreover, according to the variations of the permeability and membrane fouling resistance, aeration was able to mitigate and control the membrane fouling to a certain extent, but the optimization of aeration conditions still needs to be studied.  相似文献   

4.
Adding iron salt or iron hydroxide to sludgemixed liquor in an aeration tank of a conventional activated sludge processes (bioferric process) can simultaneously improve the sludge’s filterability and enhance the system’s treatment capacity. In view of this, Fe(OH)3 was added to a submerged membrane bioreactor (SMBR) to enhance the removal efficiency and to mitigate membrane fouling. Bioferric process and SMBR were combined to create a novel process called Bioferric-SMBR. A side-by-side comparison study of Bioferric-SMBR and common SMBR dealing with dyeing wastewater was carried out. Bioferric-SMBR showed potential superiority, which could enhance removal efficiency, reduce membrane fouling and improve sludge characteristic. When volumetric loading rate was 25% higher than that of common SMBR, the removal efficiencies of Bioferric-SMBR on COD, dye, and NH4 +-N were 1.0%, 9.5%, and 5.2% higher than that of common SMBR, respectively. The trans-membrane pressure of Bioferric-SMBR was only 36% of that in common SMBR while its membrane flux was 25% higher than that of common SMBR. The stable running period in Bioferric-SMBR was 2.5 times of that in common SMBR when there was no surplus sludge discharged. The mixed liquor suspended solids concentration of Bioferric-SMBR was higher than that of common SMBR with more diversified kinds of microorganisms such as protozoans and metazoans. The mean particle diameter and specific oxygen uptake rate of Bioferric-SMBR were 3.10 and 1.23 times the common SMBR, respectively.  相似文献   

5.
Phosphorus removal was enhanced effectively by dosing aluminum sulfate and effluent phosphorus concentration was lower than 0.5 mg/L. Sludge activity was not inhibited but improved slightly with addition of aluminum sulfate. EPS concentrations both in mixed liquid and on membrane surface were decreased, contributing to the effective mitigation of membrane fouling. To enhance phosphorus removal and make the effluent meet the strict discharge level of total phosphorus (TP, 0.5 mg/L), flocculant dosing is frequently applied. In this study, the performance of aluminum sulfate dosing in a University of Cape Town Membrane Bioreactor (UCT-MBR) was investigated, in terms of the nutrients removal performance, sludge characteristics and membrane fouling. The results indicated that the addition of aluminum sulfate into the aerobic reactor continuously had significantly enhanced phosphorus removal. Moreover, COD, NH4+-N and TN removal were not affected and effluent all met the first level A criteria of GB18918-2002. In addition, the addition of aluminum sulfate had improved the sludge activity slightly and reduced trans-membrane pressure (TMP) increase rate from 1.13 KPa/d to 0.57 KPa/d effectively. The membrane fouling was alleviated attributed to the increased average particle sizes and the decreased accumulation of the small sludge particles on membrane surface. Furthermore, the decline of extracellular polymeric substance (EPS) concentration in mixed sludge liquid decreased its accumulation on membrane surface, resulting in the mitigation of membrane fouling directly.  相似文献   

6.
pH调节对活性污泥混合液膜过滤性的影响   总被引:6,自引:0,他引:6  
庄芫  吴金玲  黄霞 《环境化学》2006,25(1):55-59
探讨了用NaOH调节pH值对膜-生物反应器混合液膜过滤性能的影响,并通过分析污泥混合液性质的变化研究其作用机理.试验表明,适当调节pH到碱性,可以使膜过滤性能得到改善.投加碱液使污泥胞外多聚物(EPS)减少,污泥容积指数(SVI)降低,但上清液中总有机碳(TOC)浓度增加.混合液膜过滤性能的改善与污泥SVI的降低密切相关.在碱性条件下,从细胞表面脱落下来的EPS对絮体颗粒的絮凝性有一定促进作用,但效果有限.推测碱液处理使细胞表面的LB-EPS脱落,从而使细胞表面疏水性增加,有利于絮体颗粒之间的絮凝,从而有利于混合液膜过滤性的改善.  相似文献   

7.
Aerobic granules were formed in a conventional, continuous flow, completely mixed activated sludge system (CMAS). The reactor was inoculated with seed sludge containing few filaments and fed with synthetic municipal wastewater. The settling time of the sludge and the average dissolved oxygen (DO) of the reactor were 2 h and 4.2 mg·L-1, respectively. The reactor was agitated by a stirrer, with a speed of 250 r·min-1, to ensure good mixing.The granular sludge had good settleability, and the sludge volume index (SVI) was between 50 and 90 mL·g-1. The laser particle analyzer showed the diameter of the granules to be between 0.18 and 1.25 mm. A scanning electron microscope (SEM) investigation revealed the predominance of sphere-like and rod-like bacteria, and only few filaments grew in the granules. The microbial community structure of the granules was also analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Sequencing analysis indicated the dominant species were α, β, and γ-Proteobacteria, Bacteroidetes, and Firmicutes. The data from the study suggested that aerobic granules could form, if provided with sufficient number of filaments and high shear force. It was also observed that a high height-to-diameter ratio of the reactor and short settling time were not essential for the formation of aerobic granular sludge.  相似文献   

8.
Anoxic granular sludge was developed in a laboratory-scale sequencing batch reactor which was fed with sodium acetate and sodium nitrate as electron donor and accepter. The sludge in the reactor was almost granulated after approximately 90 days of cultivation. In the present study, a detailed examination of surface morphology and internal structure of anoxic granular sludge was conducted using scanning electron microscope. It showed that the bacteria inside the granules had a uniform, coccus-like shape. By contrast, filamentous bacteria were predominant outside the granules. These bacteria were woven and had wrapped the coccus bacteria together to form granules. The small amounts of DO in the liquid bulk promoted the growth of filamentous bacteria on the surface of the granules. A string-bag hypothesis was proposed to elucidate the structure and formation of the anoxic granular sludge. It suggested that micro-aeration could be a method to promote granulation in practical anoxic treatment systems.  相似文献   

9.
• Effects of metabolic uncouplers addition on sludge reduction were carried out. • TCS addition effectively inhibited ATP synthesis and reduced sludge yield. • The effluent quality such as TOC and ammonia deteriorated but not significantly. • Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.  相似文献   

10.
横向流超滤膜污染动力学模型   总被引:1,自引:0,他引:1  
王晓昌  王锦 《环境化学》2002,21(6):552-557
从超滤过程中面滤饼层内对流传输、反向传输和颗粒积累的质量平衡关系出发,建立了描述渗透通量随时间变化关系的横向流超滤膜污染动力学模型,该模型将通常难以确定的滤饼层比阻和反向扩散系数包含在两个经验参数a,b中,通过简单的实验确定参数值后,即可用于横向流超滤过程的数学模拟,模拟计算结果与实验实测数据比较接近,且从理论上说明了横向流超滤从非平衡到最终平衡过渡的原理以及半透膜压,膜面剪切率对渗透通量的影响。  相似文献   

11.
采用Motic数码显微镜观察SRT为3 d和15 d的活性污泥絮体以及它们的LEPS和TEPS絮凝污泥悬浮液形成的生物絮体的结构。结果表明,高SRT(15 d)活性污泥絮体较低SRT(3 d)活性污泥絮体的颜色深且密实;同一活性污泥中,内层的絮体结构较外层的絮体结构密实,细菌细胞与菌胶团之间的结合更为紧密。最后,结合絮体结构图片,从大分子作用力的角度,提出了活性污泥絮体结构模型,以形象地描述不同SRT活性污泥EPS及其表面性质变化对活性污泥絮凝沉降性能的影响。  相似文献   

12.
废水处理系统中生物聚集体胞外多聚物研究进展   总被引:2,自引:0,他引:2  
胞外多聚物(Extracellular polymeric substances,EPS)是废水生物处理系统中生物聚集体(包括絮体污泥、生物膜、颗粒污泥等)的重要组成部分,直接包裹于微生物细胞壁外,其理化性质及所处的特殊位置决定了它在生物聚集体中的重要作用.综述了EPS对废水生物处理系统污泥沉降性能、脱水性以及膜生物反应器膜污染影响的相关研究,分析认为EPS组成与结构特性改变污泥表面电位、疏水性等,进而影响污泥沉降与脱水性能、膜污染程度;以好氧颗粒污泥为典型的生物聚集体代表,总结了EPS组分含量与分布对颗粒污泥的形成与结构稳定性的影响,并在EPS提取方法标准化、现代理化技术与分子生物学技术综合分析等方面进行了展望,进一步的研究有望揭示生物絮凝体形成过程EPS的产生与调控机制.  相似文献   

13.
丝状细菌污泥膨胀的FISH探针研究进展   总被引:6,自引:0,他引:6  
在活性污泥法处理污水的工艺中,丝状细菌的过度繁殖常引起大量的泡沫并引发污泥膨胀.该现象的发生导致二沉池的污泥不能有效地沉淀,并大量流出,影响了污水处理厂的正常操作.本文综述了引起污泥膨胀发生的7大类潜在丝状细菌及其相关生理生态学特性;列举了国内外现有的潜在丝状细菌的FISH探针及其相关的杂交条件.目前,在活性污泥丝状细菌的分类鉴定、胞外酶、细胞表面特性和相关生态生理学特性方面,荧光原位杂交(Fluorescence in situ hybridization,FISH)技术均起到重要的作用,而国内相关的研究很少.设计特异性的FISH探针,并以此进行定量荧光原位杂交,将是国内污泥膨胀问题未来研究的重点方向之一.表7参57  相似文献   

14.
In order to solve the problem of poor treatment of phosphorus in membrane bioreactor (MBR) with long sludge retention time (SRT), a ferric salt was added to enhance phosphorus removal; FeCl36H2O (Fe/P = 2.0) was added to the reactor. The removal efficiency of nitrogen, organic matters, and phosphorus in the MBR was investigated systematically. Moreover, this study focused on the membrane performance, the change of active sludge flora, and the effect of adding a ferric salt on membrane fouling before and after the addition. It was seen that adding the ferric salt could not affect the removal of COD and NH4 +-N and the removal rate of COD and NH4 +-N reached over 90%. However, the average removal rate of phosphorus was 52%, while the removal rate increased by nearly 40% after adding the ferric salt. The effects of adding ferric salts on the dominant bacteria and biological phosphorus removal of activated sludge were further studied. The results showed that the addition of ferric salt (Fe/P = 2.0) decreased the diversity of active sludge flora and relative abundance of some phosphorusaccumulating organisms and had a negative effect on biological phosphorus removal. The analysis of transmembrane pressure difference (TMP) recording revealed that the concentration of iron salts did not exacerbate membrane fouling. The results showed that the concentration of iron salts entering the membrane bioreactor would reduce the relative abundance and phosphorus removal efficiency of the activated sludge in the system to a certain extent, but it had no obvious effect on membrane fouling. It allowed the effluent to attain acceptable standards, especially with respect to phosphorus removal efficiency. © 2018 Science Press. All rights reserved.  相似文献   

15.
以自行设计的反应器作为生态滤床的基础,采用活性污泥作为接种污泥,采用轻质陶粒作为生态滤床的滤料,对其进行挂膜.在整个挂膜过程中,温度控制在中温条件下,进水pH值控制在7左右,水力停留时间为24 h,进水方式为连续进水,并根据需要对曝气量进行调节.在挂膜过程中对进、出水的COD、NH_3-N、TP、Cl~-和pH进行检测,并刮取少量轻质陶粒上的生物膜制成镜检切片后用多媒体显微镜对生物膜的形态进行观察.研究结果表明,在中温条件下采用活性污泥作为接种污泥,以轻质陶粒为滤料的生态滤床在15 d内挂膜成功;且随着进水污染负荷的提高,其去除率也逐渐提高,其中COD的去除率最后稳定在95%左右,NH3-N的去除率稳定在85%左右,TP的去除率在挂膜后期达到了80%以上;Cl~-作为微生物所需的微量元素在微生物生长高峰期为50%,稳定期保持在20%左右;进水pH保持在7左右,出水pH略高于进水,在8左右;从第13 d和第15 d的切片可观察到轮虫这种象征生物膜成熟的微生物的出现,此外还有大量的丝状菌和菌胶团.  相似文献   

16.
The UF membrane fouling by down- and up-flow BAC effluents were compared. Up-flow BAC effluent fouled the membrane faster than down-flow BAC effluent. The combined effects dominated irreversible fouling. The extent of fouling exacerbated by inorganic particles was higher. The TMP, permeate flux, and normalized membrane flux during 21 days of UF of DBAC and UBAC effluents. Fouling during ultrafiltration of down- and up-flow biological activated carbon effluents was investigated to determine the roles of polysaccharides, proteins, and inorganic particles in ultrafiltration membrane fouling. During ultrafiltration of down- flow biological activated carbon effluent, the trans-membrane pressure was≤26 kPa and the permeate flux was steady at 46.7 L?m2?h1. However, during ultrafiltration of up-flow biological activated carbon effluent, the highest trans-membrane pressure was almost 40 kPa and the permeate flux continuously decreased to 30 L?m2?h1. At the end of the filtration period, the normalized membrane fluxes were 0.88 and 0.62 for down- and up-flow biological activated carbon effluents, respectively. The membrane removed the turbidity and polysaccharides content by 47.4% and 30.2% in down- flow biological activated effluent and 82.5% and 22.4% in up-flow biological activated carbon effluent, respectively, but retained few proteins. The retention of polysaccharides was higher on the membrane that filtered the down- flow biological activated effluent compared with that on the membrane that filtered the up-flow biological activated carbon effluent. The polysaccharides on the membranes fouled by up-flow biological activated carbon and down- flow biological activated effluents were spread continuously and clustered, respectively. These demonstrated that the up-flow biological activated carbon effluent fouled the membrane faster. Membrane fouling was associated with a portion of the polysaccharides (not the proteins) and inorganic particles in the feed water. When there was little difference in the polysaccharide concentrations between the feed waters, the fouling extent was exacerbated more by inorganic particles than by polysaccharides.  相似文献   

17.
以膜生物反应器(MBR)处理模拟生活废水为研究体系,考察曝气强度对系统污染物去除效果、脱氢酶活性、胞外聚合物(EPS)组分和含量、Zeta电位、污泥粒径及跨膜压差等的影响.结果表明,随着曝气强度降低,COD去除率变化不大,均大于94.0%,脱氢酶活性明显降低,VSS/SS比值下降;污泥LB-EPS增加,Zeta电位降低,污泥平均体积粒径减小,膜通量下降速率增大.曝气强度为800—400 L.m-.2h-1的条件下,曝气产生的水力剪切力不是影响污泥粒径大小的主导因素,污泥Zeta电位则起着决定作用,但水力剪切力有利于缓解膜污染.  相似文献   

18.
低碳氮比(C/N)废水处理是含氮废水处理中的难题之一.本实验在C/N为4:1和2:1(COD和NH4+-N浓度分别为400 mg·L-1和100 mg·L-1,400 mg·L-1和200 mg·L-1)条件下,考察好氧颗粒污泥系统对低碳氮比废水的处理效果、长期运行稳定性,研究C/N对好氧颗粒微生物结构变化的影响.研究结果表明,在C/N为4:1的废水中接种活性污泥培养好氧颗粒污泥,形成的颗粒沉降性能良好,MLSS为4.94 g·L-1,SVI30为40 mL·g-1,COD去除率90%以上,氨氮去除率接近100%.降低碳氮比,即C/N为2:1后,好氧颗粒的物理及硝化性能无明显变化,MLSS为11.38 g·L-1,SVI30/SVI5维持在1左右,COD去除率大于85%,氨氮去除率98%.碳氮比降低使颗粒微生物多样性减少,其中陶厄氏菌受影响较小,而硝化功能菌出现更替:噬氢菌、食酸菌、里德拜特氏菌消失,鞘氨醇单胞菌、束缚杆菌等成为优势菌种.实验表明,该低碳氮比条件下好氧颗粒污泥系统能够稳定运行,且具有优良的处理性能.  相似文献   

19.
High strength sugar refinery wastewater was treated in a mesophilic UASB. Pyrosequencing reveals microbial community succession with OLR increase. Diversity of microbial communities in OLR12 is much higher than those in OLR36 and OLR54.0 kgCOD/(kg VSS·d). Fermentative bacteria could deal with increasing OLR through the increase of microbial diversity and quantity. Hydrogen-producing acotogens and methanogens mainly coped with high OLR shocks by increasing the quantity of community The performance and microbial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above 92.0% at organic loading rates (OLRs) of 12.0–54.0 kgCOD/(m3·d). The volatile fatty acids (VFAs) in effluent were increased to 451.1 mg/L from 147.9 mg/L and the specific methane production rate improved by 1.2–2.2-fold as the OLR increased. The evolution of microbial communities in anaerobic sludge at three different OLRs was investigated using pyrosequencing. Operational taxonomic units (OTUs) at a 3% distance were 353, 337 and 233 for OLR12, OLR36 and OLR54, respectively. When the OLR was increased to 54.0 kgCOD /(m3·d) from 12.0 kgCOD/(m3·d) by stepwise, the microbial community structure were changed significantly. Five genera (Bacteroides, Trichococcus, Chryseobacterium, Longilinea and Aerococcus) were the dominant fermentative bacteria at the OLR 12.0 kgCOD/(m3·d). However, the sample of OLR36 was dominated by Lactococcus, Trichococcus, Anaeroarcus and Veillonella. At the last stage (OLR= 54.0 kgCOD/(m3·d)), the diversity and percentage of fermentative bacteria were markedly increased. Apart from fermentative bacteria, an obvious shift was observed in hydrogen-producing acetogens and non-acetotrophic methanogens as OLR increased. Syntrophobacter, Geobacter and Methanomethylovorans were the dominant hydrogen-producing acetogens and methylotrophic methanogens in the samples of OLR12 and OLR36. When the OLR was increased to 54.0 kgCOD/(m3·d), the main hydrogen-producing acetogens and hydrogenotrophic methanogens were substituted with Desulfovibrio and Methanospirillum. However, the composition of acetotrophic methanogens (Methanosaeta) was relatively stable during the whole operation period of the UASB reactor.  相似文献   

20.
超声波对剩余污泥化学调理的影响   总被引:1,自引:0,他引:1  
李玉瑛  曹晨旸  李冰 《生态环境》2012,(7):1357-1360
以污泥脱水性能与沉降性能为指标,研究了超声波预处理对剩余污泥经阳离子聚丙烯酰胺(CPAM)进行化学调理时污泥减量效果的影响。试验结果表明,单独采用CPAM对剩余污泥进行化学调理时的ρ(最佳添加量)为120 mg.L-1,污泥滤饼含水率为81.2%;单独采用超声波处理剩余污泥时的最佳声能密度为0.04 W.mL-1,此时的滤饼含水率为80.4%。而当在采用CPAM对剩余污泥进行化学调理前先进行超声波预处理后,污泥滤饼含水率降至72.2%。试验结果表明这种联合处理方式不仅使剩余污泥的脱水性能大为改善,并且最佳CPAM投加量降低至60 mg.L-1,最佳超声声能密度降至0.03 W.mL-1,这表明联合处理方法降低了污泥处理成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号