首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Oceans are warming and becoming more acidic. While higher temperature and lower pH can have negative effects on fertilisation and development of marine invertebrates, warming may partially ameliorate the negative effect of lower pH. This study determined the effect of warming (3 °C) and decreased pH (0.3, 0.5, 1.1 units below ambient) on fertilisation and development in two populations of the sea urchin Centrostephanus rodgersii, one at its northern range limit (Coffs Harbour, New South Wales NSW, 30°27′S, 153°14′E) and the other one in New Zealand where the species may be a recent arrival (Mokohinau Islands, 35°56′S, 175°9′E). Both populations were sampled in August 2011. The two populations exhibited a differential response to temperature, while pH affected them similarly. Fertilisation was robust to pH levels forecast for 2100, and it was only slightly reduced at pH values forecast for 2300 (i.e. ≈5 and ≈8 % for the northern NSW and the New Zealand populations, respectively). Decreased pH (pH = 7.6) reduced the percentage of succeeding developmental stages. Progression through cleavage and hatching stages was faster at +3 °C in the New Zealand population but not in northern NSW urchins, while for the NSW population, there was a positive interaction between temperature and pH at hatching. Gastrulation was negatively affected by an extreme pH 7.0 treatment (60–80 % reduction) and least affected by increased temperature. The percentage of abnormal embryos at gastrulation increased significantly at +3 °C treatment in the northern NSW population. Predicted future increases in temperature may facilitate further expansion of the geographical range of C. rodgersii in New Zealand, with a minimal effect of concurrent reduced pH.  相似文献   

2.
The reproductive cycle of the sea urchin Centrostephanus rodgersii (Agassiz) was investigated in two populations, at Clovelly and Little Bay, in Sydney, New South Wales, Australia. C. rodgersii were collected at monthly intervals from February 1992 through January 1993. The reproductive cycle was determined by histological examination of oogenesis and spermatogenesis, monthly measurements of gonad index (GI), and induction of spawning by KCl injection. C. rodgersii has an annual reproductive cycle that was highly synchronous in both populations. From February to June, gametogenesis was accompanied by a decline in the amount of nutritive tissue in the gonads. The urchins were mature from June to September, with peak spawning between July and August, as indicated by a significant drop in GI. The breeding season of C. rodgersii therefore coincides with the lowest sea temperatures and the shortest days of the year. The gonads returned to the recovering condition within a month of spawning, with a substantial thickening of the nutritive layer along the gonad wall, and the GI returned to near pre-spawning levels. As a result, the spent phase was rarely found in C. rodgersii. With the exception of a significant decrease in the GI following spawning of urchins from the Clovelly population, the GI measurements did not show any distinct pattern through time. Specimens spawned in response to KCl injection from mid-May to early October, with the maximum response in July. Although all individuals sampled were at a similar stage of maturity at any one time, inter-site differences were seen with all of the methods used. Gonad indices from Little Bay were consistently higher and less variable than those from Clovelly for most of the year. The Little Bay population could also be induced to spawn for a longer period of time than could the Clovelly population. The breeding season of the Little Bay population appears to be longer than that of the Clovelly population. The relationship between size and sexual maturity was also examined. All C. rodgersii with a test diameter of >60 mm could be induced to spawn and produced viable gametes. C. rodgersii has been nominated for commercial exploitation in New South Wales, and the results of this investigation are used to make recommendations on the timing and size limits for a fishery utilising this species.  相似文献   

3.
Reproduction in the sea urchin Centrostephanus rodgersii was examined in two types of habitats (“barrens”, i.e. habitats characterised by the high crustose coralline algal cover typical of urchin-barren grounds, and by the absence of macroalgae; and “fringe”, i.e. habitats characterised by a high macroalgal biomass and few C. rodgersii) at four locations in New South Wales. The four locations: the Solitary Islands, Sydney, Ulladulla and Eden, span the distribution of C.␣rodgersii from the subtropics at its northern limit to temperate waters near its southern limit. Histology and estimates of gonad retrieval rate (GRR) from January 1994 to October 1995 indicated that reproduction was synchronous at all locations. An increase in the tempo of gametogenesis in May and onset of spawning in June at all locations is consistent with entrainment in response to exogenous factors. Over the range studied, C. rodgersii experienced relatively similar daylength cycles and contrasting sea-temperature cycles. Short days and lunar conditions coinciding with the solstice appear likely proximate cues for the onset of spawning. The major difference in reproduction among locations was in the duration of spawning. In the southern parts of its range breeding occurred over a 5 to 6 mo period, whereas at the Solitary Islands it lasted ≃1 mo. At most locations the GRRs were significantly higher in the fringe habitat than in the barrens habitat. The lower reproductive output of urchins in the barrens habitat was attributed to the food-poor conditions typical of this habitat. The developing fishery for C. rodgersii is likely to be most effective from March to early May. Urchins from barrens areas may not provide sufficient yield to warrant harvesting. Received: 29 October 1997 / Accepted: 18 May 1998  相似文献   

4.
Between 2002 and 2008, samples of the cold-water scleractinian coral Lophelia pertusa were collected from the Trondheim Fjord in Norway to examine reproductive periodicity. Collections were made from three locations: Tautra, (63°35.36′N, 10°31.23′E at 40–70 m), Stokkbergneset (63°28.18′N, 09°54.73′E at 110–500 m), and Røberg (63°28.88′N, 09°59.50′E at 250 m). Populations of L. pertusa from the Trondheim Fjord initiated oogenesis in January and spawning occurred from late January to early March the following year. Gametogenic cycles of the female L. pertusa samples overlapped by approximately 2 months, with oogonia visible in January, but this was not evident in the males. This paper provides the most complete gametogenic cycle to date and spawning observations for this important structure-forming species. The results from fjord populations are compared with published and preliminary data from other regions and are discussed in the context of regional differences in physical and biological variables, particularly food supply. Differences in gametogenic cycles within a single species provide a rare opportunity (especially in deep-sea species) to examine potential drivers of reproduction.  相似文献   

5.
Partial migration is considered ubiquitous among vertebrates, but little is known about the movements of oceanodromous apex predators such as sharks, particularly at their range extents. PAT-Mk10 and SPOT5 electronic tags were used to investigate tiger shark (Galeocerdo cuvier) spatial dynamics, site fidelity and habitat use off eastern Australia between April 2007 and May 2013. Of the 18 tags deployed, 15 recorded information on depth and/or temperature, and horizontal movements. Tracking times ranged between four and 408 days, with two recovered pop-up archival tags allowing 63 days of high-resolution archived data to be analysed. Overall mean proportions of time-at-depth revealed that G. cuvier spent the majority of time-at-depths of <20 m, but undertook dives as deep as 920 m. Tagged sharks occupied ambient water temperatures from 29.5 °C at the surface to 5.9 °C at depth. Deep dives (>500 m) occurred mostly around dawn and dusk, but no definitive daily dive patterns were observed. Horizontal movements were characterised by combinations of resident and transient behaviour that coincided with seasonal changes in water temperature. While the majority of movement activity was focused around continental slope waters, large-scale migration was evident with one individual moving from offshore Sydney, Australia, to New Caledonia (c. 1,800 km) in 48 days. Periods of tiger shark residency outside of Australia’s fisheries management zones highlight the potential vulnerability of the species to unregulated fisheries and the importance of cross-jurisdictional arrangements for species’ management and conservation.  相似文献   

6.
We examined the response of the tropical sand dollar Arachnoides placenta to reduced seawater pH in experiments spanning ca. 50 % of the planktonic larval duration. A. placenta inhabits intertidal sandy beaches where we observed a minimum in situ pH range 0.06 pH units (pH 8.10–8.16). The responses of gametes and larvae to seawater pH were tested in vitro in ambient (pH 8.14, pCO2 = 525.7 μatm, total alkalinity = 2,651 μmol kg soln?1) and three reduced pH seawater treatments (7.8–7.0). Percentage fertilisation decreased significantly with decreasing pH across a range of sperm/egg ratios (4:1 up to 4,000:1). A. placenta reached the advanced pluteus stage in 4 days, and during this time, we saw no difference in survival rate of larvae between the ambient (67 %) and pH 7.79 (72 %) treatments. Four-day survival was, however, reduced to 44 and 11 % in the pH 7.65 and 7.12 treatments, respectively. Larval development and morphometrics varied among pH treatments. Embryos reared in pH 7.12 exhibited arrested development. Larvae reared at pH 7.65 showed delayed development and greater mortality compared with those reared at pH 7.79 and 8.14. When larval morphometrics are compared among larvae of the same size, differences in larval width and total arm length between pH treatments disappear. These results suggest that variation in larval size among the three highest pH treatments at a given time are likely the result of slower development and apparent shrinkage of surviving larvae and not direct changes in larval shape. There were no differences in the percentage inorganic content (a proxy for calcification) in larvae reared in either an ambient or a pH 7.7 treatment. The responses of fertilisation and development to decreased pH/increased pCO2 in A. placenta are within the range of those reported for other intertidal and subtidal echinoid species from colder latitudes.  相似文献   

7.
D. Hicks  R. McMahon 《Marine Biology》2002,140(6):1167-1179
Acute and chronic upper and lower thermal limits and freeze resistance were investigated in the nonindigenous brown mussel, Perna perna, from the Texas Gulf of Mexico coast in order to assess its potential distribution in North American coastal waters. This species' long-term, incipient lower and upper thermal limits were 7.5°C and 30°C, congruent with the seasonal ambient water temperature range of 10-30°C reported for other populations worldwide. Effects of temperature acclimation and individual size on survival time were most pronounced on chronic exposures to lethal temperatures approaching incipient lower or upper thermal limits. When exposed to temperature increasing at 0.1°C min-1, the acute upper lethal limit was 44°C regardless of acclimation temperature or individual size. P. perna had a limited freeze resistance, being intolerant of emersion at -2.5°C. This species' narrow incipient thermal limits, limited capacity for temperature acclimation and poor freeze resistance may account for its restriction to subtidal and lower eulittoral zones of cooler subtropical rocky shores. Near extinction of P. perna from Texas Gulf of Mexico waters occurred in the summer of 1997 when mean surface-water temperatures approached its incipient upper limit of 30°C.  相似文献   

8.
The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.  相似文献   

9.
The photophysiology of three geniculate coralline algal species (Corallina officinalis, C. caespitosa and Ellisolandia elongata) was determined in intertidal rock pools in the south-west UK at Combe Martin (51°12′31N 4°2′19W) and Heybrook Bay (50°31′66N 4°11′41W), at the start, middle and end of summer (September 1 and 2) and winter (February 9 and 10) daylight tidal emersion periods, in relation to prevailing irradiance, temperature and carbonate chemistry conditions. Algal photophysiology was assessed from rapid light curves performed using pulse amplitude modulation fluorometry. Corallina and Ellisolandia experienced significant fluctuations in irradiance, temperature and carbonate chemistry over seasonal and tidal cycles. Rock pool carbonate chemistry was predictable (R 2 = 0.82, P < 0.0001) by photodose (summed irradiance) plus water temperature, but not significantly related to photophysiology. In contrast, Corallina and Ellisolandia relative maximum electron transfer rate showed a significant negative relationship (R 2 = 0.65, P < 0.0001) with irradiance plus water temperature. At a seasonal resolution, photoacclimation to maximize both light harvesting during winter months and photoprotection during summer months was observed for all species. Dynamic photoinhibition was apparent over both summer and winter tidal emersion, in relation to irradiance fluctuations. More effective photoinhibition was apparent during summer months, with greater sensitivity to irradiance and slower recovery in F v/F m, observed during winter. With sustained high irradiance over tidal emersion, the establishment of high pH/low inorganic carbon conditions may impact photochemistry. This study represents the first assessment of C. officinalis, C. caespitosa and E. elongata photophysiology underpinned by clear species concepts and highlights their ability to adapt to the dramatically fluctuating conditions experienced in intertidal rock pools.  相似文献   

10.
High-rocky-shore intertidal animals are predicted to be generally more vulnerable to climate warming than lower-shore species, because their thermal tolerances lie closer to maximum environmental temperatures (T e). However, this prediction is based on taxonomically and ecologically limited information. The present study investigated the effect of habitat use on climate warming vulnerability of the tropical high-shore snail, Echinolittorina malaccana (from Brunei Darussalam, 5°N), which aestivates in sun-exposed or shaded habitats. The thermal regimes of these habitats differed vastly, but snails showed similar daily energy consumption in either habitat, due to temperature-insensitive metabolism (TIM) between 35 and 46 °C in the sun-resting snails. However, maximum T e values in the shade and the sun were 35 and 46 °C, respectively, suggesting that sun-resting snails, which presently experience temperatures near the incipient lethal temperature range (46–56 °C), should be more threatened by further warming than shade-resting snails, which have an 11 °C ‘safety margin’. Thus, vulnerability of high-shore species to climate warming could be moderated by availability of shaded habitat, making predictions for these species more complex than previously realized.  相似文献   

11.
The effect of light and temperature on the growth of Microcystis ichthyoblabe and Anabaena aphanizomenoides, isolated from the subtropical Oued Mellah lake, Morocco (33°30′N–07°20′W), were investigated in batch culture. Growth rates at 66 light–temperature combinations were determined and fitted with different mathematical models. The results show that the two Cyanobacteria grow at all light intensities and temperatures, except at 10 °C for A. aphanizomenoides, where the growth was strongly limited. The μmax of M. ichthyoblabe increased with temperature from 0.56 d?1 at 10 °C to 1.32 d?1 at 35 °C. At all tested temperatures, a relative photoinhibition within the studied range of irradiance was observed and the photosensitivity was thermodependent. For Anabaena, the obtained μmax ranged between 0.07 d?1 at 10 °C and 1.46 d?1 at 35 °C, and a weak photoinhibition was observed at 15 °C. The positive correlation between μmax and Iopt (r2≥0.93) indicates a close interaction between light and temperature on the cyanobacteria growth. The results obtained in this work suggest that the growth of these two species is possible under low light and low temperature.  相似文献   

12.
Migratory species with a broad geographic range, such as north-east Atlantic mackerel, may be amongst the fauna most able to respond to warming seas, typically with a poleward shift in range. Habitat heterogeneity could, however, produce more complex patterns than a simple polewards translation in distribution. We tested for changes in the central location and spatial spread of mackerel spawning over a 33-year period. Spatial statistics [centre of gravity (CoG) of egg production, spatial variance, and degree of anisotropy] were used to summarise interannual changes in the spawning locations of the western spawning stock of north-east Atlantic mackerel (NEA-WSC) using data from the ICES triennial egg survey. A northwards shift in CoG of egg production estimates was observed, related to both an expansion in the distribution in survey effort and warming waters of the north-east Atlantic. Sea surface temperature (SST) had a significant positive association with the observed northward movement of NEA-WSC mackerel, equivalent to a displacement of 37.7 km °C?1 (based on spring mean SST for the region). The spatial distribution of spawning around the CoG also changed significantly with SST, with a less elongated spatial spread in warm years. An increase in the proportion of spawning over the Porcupine Bank demonstrated how habitat interacts with positional shifts to affect how north-east Atlantic mackerel are distributed around the centre of their spawning range.  相似文献   

13.
Brown shrimp (Crangon crangon, L.) are subjected to a huge annual temperature range, and certain thermal conditions during winter have been identified to affect the brown shrimp population. Despite that, little is known about its thermal biology with regard to critically low temperatures. In the present study, we determined the critical thermal minima (CTmin) and the critical lethal minima (CLmin) of male and female brown shrimp of different body sizes in laboratory-based experiments. For the CTmin trials, shrimp were acclimated to 4.0, 9.0, and 14.0 °C and exposed to a cooling rate of ?0.2 °C min?1. In the CLmin trials, brown shrimp were exposed to a cooling rate of ?1.0 °C day?1 without prior thermal acclimation. Acclimation temperature significantly affected the temperature tolerance of brown shrimp (p < 0.001). CTmin among the experimental groups just varied slightly, and no clear effect of gender or body size was observed. In the CLmin trials, brown shrimp even tolerated the coldest temperature of ?1.7 °C that could be established in the experimental setup. However, we observed a negative relationship between temperature and reactivity within the range of 7.0 and 1.0 °C that was determined by means of the flicking response. This relationship suddenly broke between 1.0 and 0.0 °C where an abrupt drop in the reactivity of the shrimp became apparent. The results of this study revealed that brown shrimp hold a wider thermal range as originally reported and that it can cope with subzero temperatures. Implications of low-temperature tolerance are discussed in the context of the brown shrimp’s ecology as well as stock assessment.  相似文献   

14.
To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179′N, 120°44.85′E), were exposed to ambient (419–470 μatm) and high (604–742 μatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality. The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.  相似文献   

15.
Reproduction of the ophiuroid Ophiactis resiliens Lyman 1879, a common species in the shallow waters around Australia, was examined over 1 year in two populations near Sydney, New South Wales. Gametogenesis was documented by histological examination of the gonads. Vitellogenesis in females and spermatocyte proliferation in males started in February and March. O. resiliens had an annual spawning period from May to September/October with peak gamete release from May to July. Thereafter, spawning occurred in some specimens through November. Gravid gonads were present for approximately 2 months longer in O. resiliens from Clovelly Bay than in those from Little Bay. At both sites spawning was episodic and gametogenesis continued through most of the spawning season. Most specimens (50–100%) collected from November to March had indeterminate/recovery stage gonads, the sex of which, could not be determined. The timing of gametogenic renewal during these months varied among individuals. O. resiliens has a 3-month planktonic stage and the presence of juveniles, 0.5 –1.5 mm disk diameter, in the coralline algal turf at Little Bay from February to May, suggests that settlement occurs in summer and autumn at this site. In contrast, juveniles were rarely encountered in coralline turf at Clovelly.  相似文献   

16.
The tolerance and resistance parameters of Mytilus edulis were investigated using probit analysis based on the dosage-mortality response curve. The effect of thermal acclimation on incipient lethal temperatures for a range of 5° to 25°C are described. The ultimate upper incipient lethal temperature is 28. 2°C. Changes in the thermal resistance parameters with size, photoperiod and salinity are shown to be statistically significant. The temperature of incapacitation of the mussel is defined in relation to the critical thermal maxima. A correlation was found between latitude and both temperature of incapacitation and temperature of spawning in the laboratory.  相似文献   

17.
Ocean warming and acidification are co-occurring stressors likely to affect marine biota through climate-driven change to the ocean. We investigated the effects of increased temperature and lowered pH, solely and in combination, on the growth of the endemic Australian bryozoan, Celleporaria nodulosa. Two temperatures and three pH levels were fully crossed in experimental treatments performed in winter 2008 (August) and summer 2009 (February/March). Fragments of C. nodulosa colonies (clones) were collected from Coffs Harbour, NSW, Australia, (30°18′S, 153°09′E) and elongation of colonies was assessed periodically over a 12-day incubation period. Lowered pH in winter significantly decreased growth. Elevated temperatures during the summer significantly impeded the growth of bryozoan colonies, possibly masking the effect of ocean acidification and discovering a maximal thermal tolerance at around 27 °C for C. nodulosa. The effects of decreased pH and increased temperature may be seasonally dependent and particularly acute during the summer months. Thermal stress may in fact be the initial stressor before ocean acidification, negatively affecting organisms in such a way that they are unable to survive before feeling the effects of ocean acidification.  相似文献   

18.
The upper thermal limits for burrowing and survival were compared with micro-habitat temperature for anomalodesmatan clams: Laternula elliptica (Antarctica, 67°S); Laternula recta, (temperate Australia, 38°S) and Laternula truncata (tropical Singapore, 1°N). Lethal limits (LT50) were higher than burrowing limits (BT50) in L. elliptica (7.5–9.0 and 2.2°C) and L. recta (winter, 32.8–36.8 and 31.1–32.8°C) but the same range for L. truncata (33.0–35.0 and 33.4–34.9°C). L. elliptica and L. truncata had a BT50 0.4 and 2.4–3.9°C, respectively, above their maximum experienced temperature. L. recta, which experience solar heating during midday low tides, had a BT50 0.7–2.4°C below and a range for LT50 that spanned their predicted environmental maximum (33.5°C). L. recta showed no seasonal difference in LT50 or BT50. Our single genus comparisons contrast with macrophysiological studies showing that temperate species cope better with elevated temperatures. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Meroplankton are seasonally important contributors to the zooplankton, particularly at inshore sites, yet their feeding ecology is poorly known relative to holoplankton. While several studies have measured feeding in decapod larvae, few studies have examined the feeding rates of decapod larvae on natural prey assemblages throughout the reproductive season. We conducted 8 feeding experiments with Necora puber, Liocarcinus spp. and Upogebia spp. zoea larvae collected from the L4 monitoring site off Plymouth (50°15.00′N, 4°13.02′W) during spring–summer 2009 and 2010. This period spanned moderate-to-high food availability (0.5–1.6 µg chl-a L?1), but a great range in food composition with small cells <20 µm dominating in 2010. Daily rations averaged 17, 60 and 22 % of body C for the 3 respective decapod species. Clearance rates differed according to prey type, and all 3 decapod genera showed evidence of selection of dinoflagellates. Importantly, small cells including nano- and pico-plankton were ingested, this being demonstrated independently by flow cytometric analysis of the feeding experiments and molecular analysis. PCR-based analysis of the haptophyte portion of the diet revealed ingestion of Isochrysis galbana by decapod larvae in the bottle incubations and Isochrysis galbana and Phaeocystis globosa by decapod larvae collected directly from the field. This study has shown that pico- and nano-sized plankton form an important supplement to the diverse and variable diet of decapod larvae.  相似文献   

20.
Large Atlantic halibut (Hippoglossus hippoglossus) off the eastern coast of Canada were tagged with pop-up satellite archival transmission tags (N = 17) to track movements, determine ambient depth and temperature, and infer spawning activity. Many halibut showed seasonal movements from deepwater slope areas in fall and winter to shallower feeding grounds on the Scotian Shelf and Grand Banks in summer. Halibut depths ranged between 0 and 1,640 m. Mean temperature of occupation was 4.7 °C. Multiple short-term vertical ascents from a consistent baseline depth, characterized as spawning rises, were identified in seven of the tagged halibut south of the Grand Banks. All presumed spawning rises occurred in multiples of 2–6 events at 2- to 9-day intervals between October and January, spanning an average vertical extent of 50–100 m at depths of about 800–1,000 m. Given the direction and velocity of the slope water currents and the duration of the pelagic stage, the calculated 300–500 km drift of the eggs and larvae would take them onto the Scotian Shelf, as well as into the Gulf of St. Lawrence. Therefore, the location of the presumed spawning grounds is consistent with expectations based on migration compensation theory, the northeasterly migratory patterns of the juveniles, the relatively static distribution of the adults off southern Newfoundland, and the prevailing currents at depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号