首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Among bivalves, scallops are exceptional due to their capacity to escape from predators by swimming which is provided by rapid and strong claps that are produced by the phasic muscle interspersed with tonic muscle contractions. Based on the concept of oxygen and capacity-limited thermal tolerance, the following hypothesis was tested: ocean warming and acidification (OWA) would induce disturbances in aerobic metabolic scope and extracellular acid-case status and impair swimming performance in temperate scallops. Following long-term incubation under near-future OWA scenarios [20 vs. 10 °C (control) and 0.112 kPa CO2 (hypercapnia) vs. 0.040 kPa CO2 (normocapnic control)], the clapping performance and metabolic rates (MR) were measured in resting (RMR) and fatigued (maximum MR) king scallops, Pecten maximus, from Roscoff, France. Exposure to OA, either alone or combined with warming, left MR and swimming parameters such as the total number of claps and clapping forces virtually unchanged. Only the duration of the escape response was affected by OA which caused earlier exhaustion in hyper- than in normocapnic scallops at 10 °C. While maximum MR was unaffected, warm exposure increased RMR in both normocapnic and hypercapnic P. maximus resulting in similar Q 10 values of ~2.2. The increased costs of maintenance and the observation of strongly reduced haemolymph PO2 levels indicate that at 20 °C scallops have reached the upper thermal pejus range with unbalanced capacities for aerobic energy metabolism. As a consequence, warming to 20 °C decreased mean phasic force during escape performance until fatigue. The observed prolonged recovery time in warm incubated scallops might be a consequence of elevated metabolic costs at reduced oxygen availability in the warmth.  相似文献   

2.
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid–base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 μatm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid–base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid–base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.  相似文献   

3.
Ocean warming and acidification are co-occurring stressors likely to affect marine biota through climate-driven change to the ocean. We investigated the effects of increased temperature and lowered pH, solely and in combination, on the growth of the endemic Australian bryozoan, Celleporaria nodulosa. Two temperatures and three pH levels were fully crossed in experimental treatments performed in winter 2008 (August) and summer 2009 (February/March). Fragments of C. nodulosa colonies (clones) were collected from Coffs Harbour, NSW, Australia, (30°18′S, 153°09′E) and elongation of colonies was assessed periodically over a 12-day incubation period. Lowered pH in winter significantly decreased growth. Elevated temperatures during the summer significantly impeded the growth of bryozoan colonies, possibly masking the effect of ocean acidification and discovering a maximal thermal tolerance at around 27 °C for C. nodulosa. The effects of decreased pH and increased temperature may be seasonally dependent and particularly acute during the summer months. Thermal stress may in fact be the initial stressor before ocean acidification, negatively affecting organisms in such a way that they are unable to survive before feeling the effects of ocean acidification.  相似文献   

4.
Future ocean acidification will be amplified by hypoxia in coastal habitats   总被引:1,自引:0,他引:1  
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.  相似文献   

5.
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7′N, 12°1.1′W) and spawned in July 2011. Larvae were exposed to Ambient (400 μatm CO2), MidCO2 (700 μatm), or HighCO2 (1,000 μatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.  相似文献   

6.
Since the industrial revolution, [CO2]atm has increased from 280 μatm to levels now exceeding 380 μatm and is expected to rise to 730–1,020 μatm by the end of this century. The consequent changes in the ocean’s chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (ΔpH 0.5; 0.16 % CO2, ~1,600 μatm) significantly (p < 0.05) reduced oxygen consumption rate up to 17 %. Moreover, the swimming duration and orientation frequency also decreased with increasing pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.  相似文献   

7.
We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24 °C, 700–2,140 μatm) for 8 weeks in a batch culture and at four pCO2 levels (20 °C, 620–2,870 μatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 μatm pCO2 as is already naturally experienced by the investigated barnacle population.  相似文献   

8.
Given the threats of greenhouse gas emissions and a changing climate to marine ecosystems, there is an urgent need to better understand the response of not only adult corals, which are particularly sensitive to environmental changes, but also their larvae, whose mechanisms of acclimation to both temperature increases and ocean acidification are not well understood. Brooded larvae from the reef coral Pocillopora damicornis collected from Nanwan Bay, Southern Taiwan, were exposed to ambient or elevated temperature (25 or 29 °C) and pCO2 (415 or 635 μatm) in a factorial experiment for 9 days, and a variety of physiological and molecular parameters were measured. Respiration and rubisco protein expression decreased in larvae exposed to elevated temperature, while those incubated at high pCO2 were larger in size. Collectively, these findings highlight the complex metabolic and molecular responses of this life history stage and the need to integrate our understanding across multiple levels of biological organization. Our results also suggest that for this pocilloporid larval life stage, the impacts of elevated temperature are likely a greater threat under near-future predictions for climate change than ocean acidification.  相似文献   

9.
Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 μatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, stop duration, and horizontal and vertical turn angles to determine whether elevated seawater pCO2—at beyond near-future ocean acidification levels—affects the swimming kinematics of Atlantic cod larvae. There were no significant differences in most of the variables tested: the swimming kinematics of Atlantic cod larvae at 12 and 27 dph were highly resilient to extremely elevated pCO2 levels. Nonetheless, cod larvae cultured at the highest pCO2 concentration displayed vertical turn angles that were more restricted (median turn angle, 15°) than larvae in the control (19°) and medium (19°) treatments at 12 dph (but not at 27 dph). Significant reduction in the stop duration of cod larvae from the high treatment (median stop duration, 0.28 s) was also observed compared to the larvae from the control group (0.32 s) at 27 dph (but not at 12 dph). The functional and ecological significance of these subtle differences are unclear and, therefore, require further investigation in order to determine whether they are ecologically relevant or spurious.  相似文献   

10.
To estimate the impact of CO2-driven ocean acidification on the early life stages of gastropods, the effects of increased partial pressure of seawater carbon dioxide (pCO2) (800–2,000 μatm) on the early developmental stages and larval shell length of the commercially important gastropod, the horned turban snail, Turbo cornutus were investigated. Increase in experimental seawater pCO2 had an increasingly negative impact on the early developmental rate; the proportion of embryos or larvae displaying retarded development increased at higher pCO2. The proportion of embryos that developed to the 4-cell stage at 2 h after fertilization decreased linearly with increasing pCO2. At ~1,000 μatm pCO2, retarded development was observed in ~50 % of larvae. No embryos developed to the 4-cell stage at 2,000 μatm pCO2 within 2 h of fertilization. A similar trend continued until 24–26 h after fertilization; the proportion of larvae attaining veliger stage by 24–26 h also decreased with increasing pCO2. The shell length of T. cornutus veligers decreased gradually as seawater pCO2 increased, but markedly decreased in seawater under nearly unsaturated and unsaturated conditions (≤1.04) of the aragonite saturation state (Ω aragonite). The results indicate that increased pCO2 seawater has a progressive and acute effect on embryonic and larval T. cornutus, and imply that the extended early developmental period and/or the downsized larval shell produced by ocean acidification will have a negative impact on survival, settlement and recruitment well into the future.  相似文献   

11.
To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179′N, 120°44.85′E), were exposed to ambient (419–470 μatm) and high (604–742 μatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality. The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.  相似文献   

12.
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.  相似文献   

13.
Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55°03′N, 8°44′E) and offspring to ambient (~400 µatm) and elevated (~1,000 µatm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects.  相似文献   

14.
The thermal envelope of development to the larval stage of two echinoids from eastern Australia was characterized to determine whether they fill their potential latitudinal ranges as indicated by tolerance limits. The tropical sand dollar, Arachnoides placenta, a species that is not known to have shifted its range, was investigated in Townsville, northern Australia (19°20′S, 146°77′E), during its autumn spawning season (May 2012). The subtropical/temperate sea urchin, Centrostephanus rodgersii, a species that has undergone poleward range expansion, was investigated in Sydney, southern Australia (33°58′S, 151°14′E), during its winter spawning season (August 2012). The thermal tolerance of development was determined in embryos and larvae reared at twelve temperatures. For A. placenta, the ambient water temperature near Townsville and experimental control were 24 °C and treatments ranged from 14 to 37 °C. For C. rodgersii, ambient Sydney water temperature and experimental control were 17 °C, and the treatment range was 9–31 °C. A. placenta had a broader developmental thermal envelope (14 °C range 17–31 °C) than C. rodgersii (9 °C range 13–22 °C). Both species developed successfully at temperatures well below ambient, suggesting that cooler water is not a barrier to poleward migration for either species. Both species presently live near the upper thermal limits for larval development, and future ocean warming could lead to contractions of their northern range limits. This study provides insights into the factors influencing the realized and potential distribution of planktonic life stages and changes to adult distribution in response to global change.  相似文献   

15.
Brown shrimp (Crangon crangon, L.) are subjected to a huge annual temperature range, and certain thermal conditions during winter have been identified to affect the brown shrimp population. Despite that, little is known about its thermal biology with regard to critically low temperatures. In the present study, we determined the critical thermal minima (CTmin) and the critical lethal minima (CLmin) of male and female brown shrimp of different body sizes in laboratory-based experiments. For the CTmin trials, shrimp were acclimated to 4.0, 9.0, and 14.0 °C and exposed to a cooling rate of ?0.2 °C min?1. In the CLmin trials, brown shrimp were exposed to a cooling rate of ?1.0 °C day?1 without prior thermal acclimation. Acclimation temperature significantly affected the temperature tolerance of brown shrimp (p < 0.001). CTmin among the experimental groups just varied slightly, and no clear effect of gender or body size was observed. In the CLmin trials, brown shrimp even tolerated the coldest temperature of ?1.7 °C that could be established in the experimental setup. However, we observed a negative relationship between temperature and reactivity within the range of 7.0 and 1.0 °C that was determined by means of the flicking response. This relationship suddenly broke between 1.0 and 0.0 °C where an abrupt drop in the reactivity of the shrimp became apparent. The results of this study revealed that brown shrimp hold a wider thermal range as originally reported and that it can cope with subzero temperatures. Implications of low-temperature tolerance are discussed in the context of the brown shrimp’s ecology as well as stock assessment.  相似文献   

16.
The impact of elevated CO2 and temperature on photosynthesis and calcification in the symbiont-bearing benthic foraminifer Marginopora vertebralis was studied. Individual specimens of M. vertebralis were collected from Heron Island on the southern Great Barrier Reef (Australia). They were maintained for 5 weeks at different temperatures (28, 32 °C) and pCO2 (400, 1,000 µatm) levels spanning a range of current and future climate-change scenarios. The photosynthetic capacity of M. vertebralis was measured with O2 microsensors and a pulse-amplitude-modulated chlorophyll (Chl) fluorometer, in combination with estimates of Chl a and Chl c 2 concentrations and calcification rates. After 5 weeks, control specimens remained unaltered for all parameters. Chlorophyll a concentrations significantly decreased in the specimens at 1,000 µatm CO2 for both temperatures, while no change in Chl c 2 concentration was observed. Photoinhibition was observed under elevated CO2 and temperature, with a 70–80 % decrease in the maximum quantum yield of PSII. There was no net O2 production at elevated temperatures in both CO2 treatments as compared to the control temperature, supporting that temperature has more impact on photosynthesis and O2 flux than changes in ambient CO2. Photosynthetic pigment loss and a decrease in photochemical efficiency are thus likely to occur with increased temperature. The elevated CO2 and high temperature treatment also lead to a reduction in calcification rate (from +0.1 to >?0.1 % day?1). Thus, both calcification and photosynthesis of the major sediment-producing foraminifer M. vertebralis appears highly vulnerable to elevated temperature and ocean acidification scenarios predicted in climate-change models.  相似文献   

17.
Acidification of the World’s oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism’s energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels “low”, “medium” and “high” for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation—with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.  相似文献   

18.
Ocean acidification is not happening in isolation but against a background of chronic low-level pollution for most coastal marine environments. The reproductive and larval stages of marine invertebrates can be highly sensitive to the impacts of both environmental pollutants and ocean acidification, but very little is currently known regarding the potential impacts of combined contaminant and high CO2 exposures on the health of marine organisms. Ocean acidification research to date has focused heavily on the responses of calcifying marine invertebrate larvae and algae, and as such the polychaetes as a group, despite their ecological importance, remain understudied. Here, we investigate the effects of elevated seawater CO2 (pH range 8.1–7.4, plus an extreme pH of 7.2 in the sperm motility experiments), in combination with the environmental pollutant copper (0.002 μM), on the early life history stages of the intertidal polychaete Pomatoceros lamarckii from two populations. P. lamarckii sperm appear to be robust to elevated seawater CO2. Whilst all three of the sperm motility end points measured showed a response to elevated CO2, these responses were small and not linear. The percentage of motile sperm and sperm curvilinear velocity were significantly reduced in the lower pH treatments of 7.4 and 7.2, whereas sperm straight-line velocity (VSL) was mostly unaffected except for an increased VSL at pH 8.0. Fertilisation success was investigated using two populations from the South West (UK), one from Torquay and one from Plymouth Sound. Fertilisation success was slightly but significantly reduced at the 7.6 and 7.4 pH treatments for both populations (a 9.0 % reduction in fertilisation success from pH 8.1 to 7.4 for Torquay), but with a greater effect observed in the population from Plymouth Sound (a 13.33 % reduction in fertilisation success). No additional impact of 0.002 μM copper exposure on fertilisation success was found. Larval survival was found to be much more sensitive to elevated CO2 than sperm function or fertilisation, and a significant interaction with copper exposure was observed. These results demonstrate the potential for polychaete larvae to be affected by predicted ocean acidification conditions and that chronic coastal pollutants, such as copper, have the potential to alter larval susceptibility to ocean acidification conditions.  相似文献   

19.
The combined effects of ocean warming and acidification were compared in larvae from two populations of the cold-eurythermal spider crab Hyas araneus, from one of its southernmost populations (around Helgoland, southern North Sea, 54°N, habitat temperature 3–18°C; collection: January 2008, hatch: January–February 2008) and from one of its northernmost populations (Svalbard, North Atlantic, 79°N, habitat temperature 0–6°C; collection: July 2008, hatch: February–April 2009). Larvae were exposed to temperatures of 3, 9 and 15°C combined with present-day normocapnic (380 ppm CO2) and projected future CO2 concentrations (710 and 3,000 ppm CO2). Calcium content of whole larvae was measured in freshly hatched Zoea I and after 3, 7 and 14 days during the Megalopa stage. Significant differences between Helgoland and Svalbard Megalopae were observed at all investigated temperatures and CO2 conditions. Under 380 ppm CO2, the calcium content increased with rising temperature and age of the larvae. At 3 and 9°C, Helgoland Megalopae accumulated more calcium than Svalbard Megalopae. Elevated CO2 levels, especially 3,000 ppm, caused a reduction in larval calcium contents at 3 and 9°C in both populations. This effect set in early, at 710 ppm CO2 only in Svalbard Megalopae at 9°C. Furthermore, at 3 and 9°C Megalopae from Helgoland replenished their calcium content to normocapnic levels and more rapidly than Svalbard Megalopae. However, Svalbard Megalopae displayed higher calcium contents under 3,000 ppm CO2 at 15°C. The findings of a lower capacity for calcium incorporation in crab larvae living at the cold end of their distribution range suggests that they might be more sensitive to ocean acidification than those in temperate regions.  相似文献   

20.
Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors—including pCO2—significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号