首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
裂解温度对稻秆与稻壳制备生物炭表面官能团的影响   总被引:5,自引:0,他引:5  
以稻秆和稻壳为原料,在不同温度下(300、400、500、600、700℃)采用热裂解法制备生物炭,利用比表面积及孔径分析仪测定各生物炭比表面积,以傅里叶红外光谱图(FTIR)和Boehm滴定法分别定性和定量分析不同生物炭表面官能团的种类和数量,分析不同温度对不同原材料制备生物炭的表面官能团种类和数量的影响.结果表明,中、低温裂解条件(300、400、500℃)下,同温度稻壳生物炭(RC-H)比表面积显著高于稻秆生物炭(RC-S);高温裂解(600、700℃)条件下,同温度RC-S比表面积则更大.随裂解温度升高,两种原材料制备的生物炭比表面积均呈显著增大的趋势,其中稻秆在600℃下制备的RC-S比表面积最大,稻壳在700℃下制备的RC-H比表面积最大.FTIR分析结果显示,同一温度下两种材料制备的生物炭特征吸收峰基本相同,且表面基团种类大致相同,但RC-S较RC-H表面官能团更丰富,在热解过程中均形成了芳香环结构,且芳香化程度随裂解温度升高而增加.不同裂解温度下两种材料的生物炭表面官能团变化规律相似,主要表现为烷烃基随裂解温度升高而缺失,甲基(—CH3)和亚甲基(—CH2)逐渐消失,而芳香族化合物增加,芳香化程度增强.Bohem滴定结果表明,各裂解温度下RC-S的表面官能团总量和碱性官能团数量均高于RC-H,而各裂解温度下RC-S的酸性官能团含量均小于RC-H.随裂解温度升高,两种材料制备生物炭的表面官能团变化规律相似,表现为表面官能团总量均减少,酸性官能团含量降低,碱性官能团含量增加.  相似文献   

2.
本研究考察了卡马西平(CBZ)在9种不同条件(裂解温度200、300、500℃,无酸,HCI和HCI-HF)处理的生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.研究结果表明,双室一级动力学模型对吸附动力学提供了更精确的描述.裂解温度和酸处理对CBZ的吸附动力学有显著影响,具体表现为不同酸洗导致矿物含量发生显著变化,矿物对生物炭吸附CBZ的快室吸附单元起主要作用,生物炭内部的芳香环随生物炭的升高而更加致密,生物炭内部的芳香环结构主要贡献于慢室吸附单元.生物炭的矿物组分一方面屏蔽了有机质上的一些吸附点位,另一方面矿物自身可以有效地吸附污染物,酸洗去矿物对生物炭吸附污染物的表观影响可能取决于两个方面的平衡.  相似文献   

3.
皇竹草生物炭的结构特征及对重金属吸附作用机制   总被引:1,自引:0,他引:1  
本研究以皇竹草秸秆为生物质原料,在不同温度(400—700℃)下利用限氧热解法烧制一系列秸秆生物炭.利用扫描电镜(SEM)、X射线衍射(XRD)和拉曼光谱对所得生物炭样品进行分析,结果表明,500℃可使皇竹草秸秆生物炭充分热解,所得的生物炭晶体构成主要由半晶体结构涡轮层碳和一些矿物晶体组成,表面含有芳香类化合物、不饱和的醚类物质、无定形碳和C—C、C—O、C—OH等官能团.吸附实验表明,不同热解温度的皇竹草秸秆生物炭对混合重金属(Cr(Ⅵ)、Cu~(2+)、Cd~(2+))的吸附效果差异显著.在EDTA共存的条件下,皇竹草秸秆生物炭对Cr(Ⅵ)的吸附量远高于Cu~(2+)、Cd~(2+),其中500℃下热解得到的生物炭对Cr(Ⅵ)的吸附量达1.525 mg·g-1,而对Cu~(2+)和Cd~(2+)的吸附量约在0.05—0.15 mg·g-1.p H影响实验表明,在酸性条件(p H 1—4)下有利于Cr(Ⅵ)的吸附,其吸附量最高可达1.836 mg·g-1,在碱性条件(p H 9—13)下有利用于Cu~(2+)的去除,其吸附量最高可达0.836 mg·g-1.Cu~(2+)和Cd~(2+)在生物炭的吸附作用主要发生在C—C/C—H、C—O/C—OH等官能团上,重金属与生物炭中C—O官能团中的氧原子可能存在配位作用.  相似文献   

4.
以玉米秸秆为原料,分别在200、400、600、700℃下制备了不同性质的生物炭,对其性质进行了表征.研究了极性物质普萘洛尔和非极性物质萘在生物炭上的吸附,并对不同物质的吸附机理进行了探讨.结果表明,随裂解温度的升高,生物炭芳香性增强,极性降低,比表面积增大.普萘洛尔和萘的吸附都随生物炭裂解温度的升高而增大,普萘洛尔的lgKoc由3.10(低平衡浓度3 mg·L~(-1))和2.88(高浓度10 mg·L~(-1))增加到3.89和3.67;萘的lgKoc由2.74(低平衡浓度3 mg·L~(-1))和2.65(高浓度15 mg·L~(-1))增加到4.59和4.05.疏水分配作用对萘在低温生物炭上的吸附起主要作用,而随裂解温度升高,表面吸附和孔填充所占贡献逐渐增强.除了以上机理,普萘洛尔还可通过静电吸引进行吸附,而且在BC200上,由于大量极性官能团的作用,有利于静电吸附,其对普萘洛尔的吸附显著大于对萘的吸附;而且存在分子的倾斜吸附或多分子层吸附,单位表面积的吸附量远远大于单分子层吸附预测值.而在高温生物炭上,由于萘的分子较小而憎水性较高有利于孔填充作用,其对萘的吸附大于对普萘洛尔的吸附.  相似文献   

5.
生物炭一旦施用到环境中以后,其物理化学性质可能会发生改变.然而,由于生物炭难以从土壤颗粒中分离出来,从而制约了对其施用后性质和功能的动态描述.苯多酸(BPCAs)是稠环芳烃的氧化产物,其作为生物标记物质能对炭黑的含量和特性进行描述.本研究尝试将苯多酸生物标记物技术用于生物炭性质研究中,以不同生物质(玉米秸秆和松木屑)在不同温度(200—500℃)下制备的生物炭为研究对象,通过元素分析及BPCAs生物标记物测定,对生物炭含量及特性进行描述.研究结果表明,BPCAs与元素分析对生物炭性质和特性的描述结果一致,BPCAs的含量随制备温度增加而增加,玉米秸秆生物炭中BPCAs含量从109 mg·g~(-1)C增加到426 mg·g~(-1)C,松木屑生物炭中BPCAs含量从21 mg·g~(-1)C增加到456 mg·g~(-1)C.B6CA所占百分比也随制备温度增加而增大,表明生物炭芳香缩合度随制备温度增加而增加.这一结果显示,BPCAs生物标记物方法有可能对生物炭的含量和特性进行一定的描述,生物标记物技术的引入,将为动态理解生物炭性质提供有力的工具.  相似文献   

6.
本研究考察了不同制备温度下(200℃、350℃、500℃、650℃),磷酸改性前后生物炭的理化性质,及其对氧氟沙星(OFL)和诺氟沙星(NOR)的等温吸附行为.采用N2物理吸附、扫描电镜、热重及元素分析等表征,对离子型抗生素在磷酸改性的生物炭上的等温吸附行为进行了研究.结果表明,随着制备温度的增加,改性生物炭的总孔体积不断增大,孔隙结构广泛形成,比表面积急剧增加.磷酸改性有助于提高生物炭的产率以及保留生物炭的极性官能团.OFL和NOR在改性生物炭上的吸附显著高于原始生物炭,且350℃下制备的改性生物炭具有最大吸附量,其吸附机制归因于吸附剂的大比表面积和孔隙填充作用.由于孔隙的利用率降低和炭的疏水性增强,OFL和NOR在更高温度改性生物炭上的吸附量逐渐降低.因此,在处理以上两种污染物时,350℃可作为磷酸改性生物炭的最佳裂解温度,且有利于减少能耗,节约资源.  相似文献   

7.
研究了不同温度(300—900℃)制备的杉木生物炭对水相中肉桂酸的吸附.所有温度下,生物炭对肉桂酸的吸附等温线都呈非线性关系,并以表面吸附为主.高比表面积是800—900℃生物炭吸附量较大的主要因素.为探明生物炭的化学组成对肉桂酸吸附的影响,将吸附量进行了比表面积标化分析,结果表明,300℃生物炭的高含量异质性原子和800—900℃生物炭表面高含量灰分占用了生物炭的吸附点位,导致它们对肉桂酸的标化吸附量明显小于400—700℃生物炭.此外,低pH抑制了600℃生物炭-水溶液中肉桂酸的解离,减少了生物炭表面—OH与解离肉桂酸之间以氢键结合的吸附量,导致400—700℃生物炭中600℃生物炭的标化吸附量最低.研究明确了生物炭的不同性质对肉桂酸吸附的影响及机制,为选择合适的生物炭作为土壤添加剂来降低肉桂酸化感作用提供了科学依据.  相似文献   

8.
为了深入了解生物炭施用对重金属环境行为和风险的影响,研究了生物炭吸附Cu~(2+)的机理。以花生壳和松木屑为原料,采用限氧升温炭化法,在200~500℃热裂解制得8种生物炭,并通过元素分析仪、傅立叶变换红外光谱分析(FITR)和扫描电镜-能谱分析(SEM/EDS)对其进行了表征。同时,采用批试验方法研究了生物炭对Cu~(2+)吸附行为。研究结果表明,(1)热解温度越高,灰分含量越多,p H增大,生物炭芳构化程度越高,比表面积更大;(2)Cu~(2+)在生物炭上的吸附动力学划分为快吸附和慢吸附两个一级动力学阶段,其中快室是生物炭表面含氧官能团如羧基(-COOH)、酚羟基(-OH)等与重金属离子相互作用的吸附,慢速室是生物炭通过颗粒内扩散作用被生物炭吸附;(3)FM模型更适合于对花生壳和松木屑制备的生物炭吸附Cu~(2+)的数据进行拟合,所得非线性指数(n)的值在0.23~0.67之间且随热解温度升高n值越来越小;(4)在热解温度为200~500℃,花生壳生物炭对Cu~(2+)的吸附量先下降后增加且PS5对Cu~(2+)的吸附性能最佳;而松木生物炭对Cu~(2+)的吸附量没有明显的规律性变化,但PC2对Cu~(2+)的吸附性能最佳。  相似文献   

9.
污泥基生物炭中重金属的形态分布及潜在生态风险研究   总被引:1,自引:0,他引:1  
重金属是城市污泥资源化利用的限制因子。炭化是污泥处理处置的重要途径。本研究中采用Tessier序列提取方法研究城市污水处理厂污泥及不同温度制备(300~700℃)的污泥基生物炭中重金属的形态分布,并运用Hakanson方法评价污泥及污泥基生物炭的潜在生态风险。结果表明:污泥和污泥生物炭中重金属含量最高的均为Zn和Cu。污泥及污泥基生物炭中重金属含量总体的次序规律是:ZnCuNiAsPbCd。随着热解温度增加,重金属更多的转化到残渣态中。600~700℃制备的污泥基生物炭中的重金属主要分布残渣态中,除Ni之外。热解温度为700℃时,污泥基生物炭中Cu、Zn、Pb、Cd、Ni和As的残渣态分别占到95%、53%、71%、59%、57%和58%。根据单个重金属的潜在生态指数(E_r)可知,污泥及污泥基生物炭中的主要风险因子是As﹑Cd和Zn。当热解温度为700℃时,污泥基生物炭的潜在风险指数(RI)从原污泥的489.32降低至73.27。可见,污泥基生物炭中重金属的潜在生态风险显著降低。因此,从重金属环境风险的角度考虑,污泥基生物炭制备的合适温度在600~700℃。  相似文献   

10.
富磷污泥生物炭去除水中Pb(Ⅱ)的特性研究   总被引:9,自引:0,他引:9  
丁文川  杜勇  曾晓岚  刘任露 《环境化学》2012,31(9):1375-1380
以城市污水厂富磷剩余污泥为研究对象,考察高温热解制备生物炭吸附剂对水中Pb(Ⅱ)的去除效果.研究表明,随着热解温度升高,制备的生物炭对Pb(Ⅱ)的吸附能力增强;在相同热解温度下,生污泥生物炭对Pb(Ⅱ)的吸附能力比消化污泥生物炭大.采用700℃热解1 h制备生污泥生物炭以研究对Pb(Ⅱ)吸附的影响因素,结果显示:吸附180 min达到吸附平衡;富磷污泥生物炭对Pb(Ⅱ)的去除率随pH增加而升高;生物炭投加量增加,对Pb(Ⅱ)去除率上升,而单位吸附容量迅速减小.污泥生物炭对Pb(Ⅱ)的吸附符合准二级反应动力学,Langmuir模型比Freundlich模型能更好地拟合等温吸附线.在pH 5.0、吸附时间3 h、生物炭投加量20 g.L-1条件下,对Pb(Ⅱ)的最大吸附量为34.5 mg.g-1,表明富磷污泥生物炭可以作为一种廉价的吸附剂.  相似文献   

11.
在200和500℃制备滇池沉积物(泥炭土和草海底泥)生物炭,采用热重分析法和氧化剂氧化法,分别研究其热稳定性和化学稳定性,为判断沉积物生物炭的寿命、指导其应用提供数据和理论基础.研究显示,泥炭土和草海底泥中有机组分的损失主要发生在500℃烧制过程(分别为40%和30%);泥炭土和草海底泥热解后灰分含量分别从44.35%、58.25%升高到58.78%、70.05%(500℃),且脂肪性减弱而芳香性增强.随烧制温度提高,碳结构更加致密,沉积物生物炭热稳定性显著提高.不同温度生物炭的化学稳定性未表现出明显差异,是因为大量的灰分对有机组分提供了较强的保护作用,致使原料和低温生物炭也具有较强的化学稳定性.草海底泥及其生物炭因为灰分含量较高、芳香性较强,热稳定性高于泥炭土.本研究指出,沉积物生物炭稳定性规律不同于传统生物质生物炭,灰分可以明显提高生物炭抵抗环境老化的能力.  相似文献   

12.
老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响   总被引:1,自引:0,他引:1  
环境变化使生物炭材料发生老化作用,老化后的生物炭是否仍具有较强的吸附能力是评价生物炭对Cd修复的长期稳定性的重要指标.本文采用自然老化(Spontaneous aging,SPON),冻融循环老化(Freeze-thaw cycles aging,FTC)和高温老化(High temperature aging,HT)的方法对水稻秸秆生物炭进行2个月的人工加速老化,运用扫描电镜(SEM-EDS)、元素分析仪、傅里叶红外光谱分析仪(FTIR)研究老化作用对秸秆生物炭材料的影响,再通过等温吸附实验研究生物炭老化前后对Cd吸附性能特征的变化.结果表明,老化作用使生物炭材料局部发生破碎,增加了生物炭表面O/C比.老化作用显著影响秸秆生物炭表面的官能团,降低了生物炭表面—OH的数量,增加了CO、—COOH和Si—O—Si的数量,出现了C≡C键,可为Cd提供更多的吸附位点.等温吸附试验进一步证明了老化后的生物炭提高了对Cd(Ⅱ)的吸附性能.与生物炭原样相比,冻融循环老化、高温老化、自然老化使生物炭的Cd最大吸附量分别达到了26.49、33.30、23.40 mg·g~(-1),增加了27.8%,60.7%,12.9%.本研究表明老化作用改变了生物炭材料的表观结构和官能团,增强了对Cd(Ⅱ)的吸附能力,因此生物炭对Cd的修复具有一定的长期稳定性.  相似文献   

13.
为了解人工合成药物在生物炭上的吸附动力学特征及其浓度效应的影响,选择卡马西平(CBZ)为目标污染物。探讨不同初始质量浓度(2、4、25、50 mg·L~(-1))在不同裂解温度(200、300、500℃)下制备的生物炭上的吸附动力学特征。结果表明,双室一级动力学模型可以精确地描述CBZ在生物炭上的吸附动力学特征。CBZ的快室吸附对总体吸附的贡献随初始浓度的增大而减小,而慢室吸附贡献则增大。π-π作用可能对CBZ的吸附贡献较大。孔隙填充可以描述慢室吸附过程,可能是吸附速率的控制环节。  相似文献   

14.
以控制除草剂污染为目标,对水稻秸秆进行低温(200和350℃)限氧热解制备生物炭,考察其对异丙甲草胺的吸附和缓释作用。结果表明,热解温度为350℃时制备的生物炭(D350)比表面积为23.2 m2·g-1,对异丙甲草胺的吸附能力明显高于秸秆原料,与200℃时制备的生物炭(D200)接近。但是,D350生物炭对异丙甲草胺的表面吸附作用更强,且脱附滞后指数(5.35)明显高于D200生物炭(2.07),脱附滞后效应更明显。以生物炭为载体制备的颗粒制剂可延缓除草剂释放,水中释放动力学模型参数nr值接近Fickian扩散模型的0.50,且释放50%活性成分所需时间(t50)与脱附滞后指数呈正相关。  相似文献   

15.
农业废弃物资源化利用和无害化处理是实现农业可持续发展和发展循环经济的有效途径,对薏仁米(Semen Coicis)秸秆制备生物炭吸附剂,实现有机固体废弃物资源化利用,解决重金属废水处理难题,以薏仁米秸秆为原料,采用快速热解法制备生物炭。为探明不同温度下制备的薏仁米秸秆生物炭对重金属Hg~(2+)的去除机制及机理,并用扫描电子镜-能谱分析法(SEM-EDS)、傅立叶变换红外光谱法(FT-IR)、氮吸附法(BET)、X射线光电子能谱法(XPS)脱附对制备的生物炭进行了表征,研究其对水中Hg~(2+)的吸附特性及机制。通过结果表明,随裂解温度的升高,生物炭的孔径尺寸逐渐增大,表面极性官能团逐渐减少,比表面积、孔隙容积呈现先增加后减小的趋势。薏仁米秸秆生物炭具有丰富的蜂窝状孔结构和-COOH、-OH等表面活性基团。生物炭对质量浓度小于100 mg·L~(-1)溶液中Hg~(2+)的去除率大于92%,且生物炭对Hg~(2+)的去除率主要发生在前1 h吸附时间内,然后趋于平衡;随添加量的增加,生物炭对Hg~(2+)去除效率呈现先增加后减小的趋势,含量为2 g·L~(-1)时生物炭对水中Hg~(2+)的去除效率最高,且700℃制备的生物炭对Hg~(2+)的去除效率最高,最大吸附量可达235.3mg·g~(-1)。吸附平衡等温线和吸附动力学结果表明,薏仁米秸秆生物炭对Hg~(2+)的吸附过程符合Langmuir等温吸附模型和准二级动力学吸附模型,其对Hg~(2+)的吸附为单层吸附;结合X射线光电子能谱和立叶变换红外光谱,吸附作用机制主要以共沉淀和表面络合为主,Hg-π非共价相互作用为辅的形式结合机理。  相似文献   

16.
不同热解条件下制备的秸秆炭对铜离子的吸附动力学   总被引:1,自引:0,他引:1  
研究了不同热解条件下制备的秸秆生物炭对铜离子的吸附动力学规律.以常见的玉米杆和番茄杆为原料,在限氧升温热解的条件下制备生物炭.研究不同热解温度(300、400、500、600、700℃)和不同热解时间(1、2、4、6、8 h)对秸秆生物炭吸附性能的影响,实验结果表明番茄杆样品T6004和玉米杆样品C6006分别获得对铜离子的最佳吸附效果,其去除率分别为98.40%和98.77%.通过批试验探明秸秆生物炭对Cu~(2+)的吸附动力学特征与机理,秸秆生物炭对Cu~(2+)的吸附动力学数据随时间的变化能很好地用准二级动力学方程进行拟合,说明生物炭对Cu~(2+)的吸附是一个复杂的过程,并不是简单的单层吸附.用颗粒内扩散模型进行拟合分析发现,热解时间和温度对秸秆生物炭的吸附边界层厚度均会产生不同程度的影响.此外,颗粒内扩散并非吸附过程的唯一控速步骤,表面吸附和液膜扩散共同控制吸附反应速率.  相似文献   

17.
以生活中常见的丝瓜络为原材料,在氮气保护和不同温度(600、700、800、900℃)的条件下热解制备了三维多孔丝瓜络生物炭(LSBC600、LSBC700、LSBC800、LSBC900)。表征了丝瓜络生物炭的理化性质,通过动力学吸附实验和等温线吸附实验研究了不同热解温度条件下制备的丝瓜络生物炭对菲的吸附动力学特征和吸附等温线特征,探讨了可能的吸附机理,评估三维多孔生物炭对菲的去除能力,为水生态系统保护和饮用水安全提供科学依据。结果表明,热解温度会影响生物炭的表面官能团组成,进而影响其芳香性。丝瓜络生物炭呈现多管束堆叠的三维多孔结构,随着热解温度的升高,挥发性物质减少,丝瓜络生物炭的表面变得粗糙,比表面积增大,芳香结构增加;LSBC900的比表面积达到了467 m2·g-1。吸附动力学结果说明,丝瓜络生物炭对菲的吸附是复杂和多阶段的,主导吸附速率的是液膜扩散过程,其次是颗粒内扩散过程。在600-900℃范围内,随着热解温度的升高,丝瓜络生物炭对菲的平衡吸附量升高,吸附速率加快。吸附等温线结果说明,热解温度升高可以提高丝瓜络生物炭对菲的吸附容...  相似文献   

18.
不同温度和时间炭化茶树枝生物炭理化特征分析   总被引:6,自引:0,他引:6  
为揭示不同温度和时间炭化的生物炭理化性质差异,以茶树枝为原材料,研究炭化温度(300、450和600℃)和时间(1和3h)对茶树枝生物炭特性及元素组成的影响.结果表明,茶树枝生物炭呈多孔、高比表面积结构,较为完整地保留了茶树枝的组织结构.茶树枝生物炭产率随炭化温度的升高和时间的延长而降低,灰分含量、pH值、有机碳、全磷、全钾、全钙、全镁含量和C/N比升高,而全氮含量则呈降低趋势.生物炭pH值与灰分含量呈极显著正相关(P<0.01),灰分含量是茶树枝生物炭碱性的主要贡献因素.炭化条件对茶树枝生物炭理化性质具有明显影响,炭化温度的影响作用大于炭化时间.此外,探讨了茶树枝生物炭在茶园的应用前景,为茶树枝生物炭的应用提供了参考.  相似文献   

19.
以油菜(Brassica campestris L.)为供试原料,对油菜废弃物生物炭进行制备与表征,通过盆栽实验,探究不同比例生物炭和腐殖酸的复配对土壤理化性质,油菜中Cd总量与根系土壤有效态Cd含量的影响。结果表明,生物炭和腐殖酸能够提高土壤养分的有效性,两者表面富含的官能团和致密的孔隙结构有利于土壤Cd的吸附,并显著提高土壤pH值,促进土壤重金属Cd的钝化作用。生物炭和腐殖酸复配在一定的比例范围内可提高油菜的生物量,但是生物炭及腐殖酸单独施用量超过1%,则对油菜的生长产生抑制。随着生物炭比例(生物炭在土壤中所占比例始终小于1%)的增加,油菜地上部分和地下部分生物量分别提高47.55%—60.33%和10.21%—87.59%,而2%生物炭和1%腐殖酸处理组,1%生物炭和2%腐殖酸处理组,1%生物炭和3%腐殖酸处理组分别降低了1.46%—88.65%和6.67%—64.23%。1%生物炭处理组和1%腐殖酸处理组的土壤有效态Cd分别降低28.76%和22.06%。同时不同比例生物炭和腐殖酸的复配显著降低油菜中Cd的累积量,降低地上部分和地下部分Cd的含量幅度分别为30.76%—90.79%和29.88%—92.46%。进一步研究表明,钝化处理的盆栽土壤有效态Cd含量均显著降低,降幅可达22.06%—47.90%。利用油菜废弃物制备生物炭复配腐殖酸极大程度提升高了盆栽土壤的质量同时利于土壤中重金属的稳定化,为中国北方碱性土壤重金属Cd超标农田的修复提供参考。  相似文献   

20.
化学老化后稻壳生物炭理化性质的改变及微观结构表征   总被引:2,自引:0,他引:2  
为研究化学老化对生物炭理化性质与微观结构的影响,本研究采用H_2O_2、HNO_3老化不同温度(350℃和550℃)下制备的稻壳生物炭,并利用元素分析、扫描电镜、漫反射红外光谱、X射线光电子能谱等测定比较生物炭老化前后表面理化性质及微观结构的变化.结果表明,经两种氧化剂老化后两种生物炭中O元素含量及O/C原子比均增加.与老化前生物炭相比,老化后两种生物炭中羟基、羧基、酮羰基、脂肪醚、酯基等含氧官能团的含量均发生不同程度的变化.通过漫反射红外与X射线光电子能谱分析相结合,发现两种稻壳生物炭经H_2O_2、HNO_3老化后均生成了羟基、羧基等含氧官能团,从而使得生物炭极性增加.此外,经HNO_3老化后稻壳炭表面生成硝基、硝酸盐等含氮基团,N元素含量亦显著增加.但氧化剂对两种温度下制备的生物炭中炭元素含量影响存在差异:经H_2O_2、HNO_3氧化后550℃制备的生物炭(R550)中C元素含量与芳香性降低;而经H_2O_2氧化后,350℃制备的生物炭(R350)中C元素含量与芳香性均上升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号