首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The northeastern Atlantic and the Mediterranean Sea share geological histories and display great faunal affinities. The majority of the Mediterranean species have Atlantic origins, with a few species with tropical affinities. These include the parrotfish Sparisoma cretense and the wrasse Thalassoma pavo that are restricted to the subtropical northeastern Atlantic, the Macaronesian archipelagos (Azores, Madeira, and Canaries) and the southern Mediterranean. The Pleistocene glaciations have been described as having different effects on the fauna of the two regions. During glacial peaks, Mediterranean waters remained warmer than those of the adjacent Atlantic. Within the eastern Atlantic, the effects of Pleistocene glaciations were differentiated. Here, we perform a comparative analysis focusing on T. pavo and S. cretense populations from the northeastern Atlantic and the Mediterranean to assess the effects of Pleistocene glaciations in these two species. Sequences from the mitochondrial control region were obtained and analyzed combining phylogeographic and demographic approaches. Gene flow between Atlantic and Mediterranean populations was shown to be very high. The Mediterranean populations of T. pavo and S. cretense showed high levels of genetic diversity, even in the eastern basin, pointing to an ancient colonization event. This suggests that both species must have been able to persist in the Mediterranean during the cold Pleistocene periods. Historical migration estimates revealed a Mediterranean towards Atlantic trend in the case of T. pavo, which may reflect the re-colonization of areas in the Atlantic by fish that survived the cold phases in relatively warmer Mediterranean refugia. Our data also showed that within the Macaronesian Archipelagos, migrations occurred from Madeira towards the Azores, for both T. pavo and S. cretense, thus supporting a post-glacial colonization of the Azores by fish that persisted in the warmer region of Madeira. Similar geographic distributions, thermal affinities, and means of dispersion for T. pavo and S. cretense resulted in a similar response to the effects of Pleistocene glaciations, as evidenced by identical phylogeographic patterns.  相似文献   

2.
The phylogeographic patterns among populations of Mesopodopsis slabberi (Crustacea, Mysida), an ecological important mysid species of marine and estuarine habitats, were analysed by means of DNA sequencing of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) and the 16S ribosomal RNA genes. Samples of M. slabberi collected from five Atlantic and two Western Mediterranean populations were investigated. Very high levels of within-population molecular diversity were observed in all samples (mean h=0.807 and π=0.0083), with exception of the Mediterranean Ebro population which contained only one haplotype. Differentiation among populations was high, and a clear phylogeographic break was observed between the Atlantic and Mediterranean populations. Moreover, a strong differentiation was detected between both populations in the Western Mediterranean Sea (Alicante and Ebro delta), while two divergent lineages occurred in sympatry within the Atlantic Mondego estuary. The high congruence between both the COI and 16S rRNA sequence data, the reciprocal monophyly of the different mitochondrial clades and the levels of nucleotide divergence between them suggest the presence of a complex of cryptic species within M. slabberi. Estimations of divergence time between the different mitochondrial lineages indicate that a split occurred during the late Miocene/early Pliocene. Such a divergence could be concordant with vicariant events during sea-level drops within the Mediterranean region at that time. However, within the Mediterranean Sea, the potential of divergence through ecological diversification cannot be ruled out.  相似文献   

3.
Molecular systematic analyses of marine taxa are crucial for recording ocean biodiversity, so too are elucidation of the history of population divergence and the dynamics of speciation. In this paper we present the joined phylogeography of the calanoid copepod Calanus helgolandicus (Claus 1863) from the North East (NE) Atlantic and the Adriatic Sea and the closely related C. euxinus (Hulsemann 1991) from the Black Sea based on sequences of a mitochondrial Cytochrome Oxidase subunit I (COI) fragment. Coalescent-based Bayesian methods and minimum spanning networks are used to reconstruct the history of population divergence. Our results reveal that copepod populations from all three basins share a great number of haplotypes and demonstrate a close genetic affinity of C. euxinus with C. helgolandicus. The data do not support significant genetic structuring among samples within seas. Coalescent analyses suggest divergences between NE Atlantic, Mediterranean, and Black Sea populations dating back to the middle Pleistocene, with the NE Atlantic–Mediterranean divergence being the earliest and the Mediterranean–Black Sea divergence the most recent. These middle Pleistocene dates are much older than the estimated dates of colonisation of the Mediterranean and Black Seas based on paleoclimatic scenarios. Our results do not rule out that the assumed colonisations took place but they indicate that the populations colonising the Mediterranean and the Black Sea were already, and have since remained, diverged. The chaetognath Sagitta setosa, which has a comparable distribution pattern and feeds upon the copepods, provides a unique opportunity to compare phylogeographic patterns and distinguish among alternative hypotheses. The dates produced in this paper are in agreement with those estimated elsewhere for S. setosa. We propose that a great deal of the genetic make-up of marine planktonic populations comprises divergences that date back to long before the last glacial maximum. We consider questions on the taxonomic status of C. euxinus to remain open. However, its high genetic affinity to the C. helgolandicus calls for further investigation.  相似文献   

4.
The coastal marine environment of the Northwest Atlantic contains strong environmental gradients that create distinct marine biogeographic provinces by limiting dispersal, recruitment, and survival. This region has also been subjected to numerous Pleistocene glacial cycles, resulting in repeated extirpations and recolonizations in northern populations of marine organisms. In this study, we examined patterns of genetic structure and historical demography in the Atlantic silverside, Menidia menidia, an annual marine fish with high dispersal potential but with well-documented patterns of clinal phenotypic adaptation along the environmental gradients of the Northwest Atlantic. Contrary to previous studies indicating genetic homogeneity that should preclude regional adaptation, results demonstrate subtle but significant (F ST = 0.07; P < 0.0001) genetic structure among three phylogeographic regions that partially correspond with biogeographic provinces, suggesting regional limits to gene flow. Tests for non-equilibrium population dynamics and latitudinal patterns in genetic diversity indicate northward population expansion from a single southern refugium following the last glacial maximum, suggesting that phylogeographic and phenotypic patterns have relatively recent origins. The recovery of phylogeographic structure and the partial correspondence of these regions to recognized biogeographic provinces suggest that the environmental gradients that shape biogeographic patterns in the Northwest Atlantic may also limit gene flow in M. menidia, creating phylogeographic structure and contributing to the creation of latitudinal phenotypic clines in this species.  相似文献   

5.
Blue mussels in the genus Mytilus first arrived in the Atlantic Ocean from the Pacific during the Pliocene, following the opening of the Bering Strait. Repeated periods of glaciation throughout the Pleistocene led to re-isolation of the two ocean basins and the allopatric divergence of Mytilus edulis in the Atlantic and M. trossulus in the Pacific. Mytilus trossulus has subsequently colonized the northwest Atlantic (NW Atlantic) so that the two species are presently sympatric and hybridize throughout much of the Canadian Maritimes and the Gulf of Maine. To estimate when M. trossulus arrived in the NW Atlantic, we have examined sequence variation within a portion of the female mtDNA lineage large untranslated region (F-LUR) for 156 mussels sampled from three Pacific and eleven Atlantic populations of M. trossulus. Although we found no evidence of reciprocal monophyly for Pacific and NW Atlantic M. trossulus, limited gene flow between ocean basins has led to the divergence of unique sequence clades within each ocean basin. In contrast, relative genetic homogeneity indicates high levels of gene flow within each basin. Coalescence-based analysis of the F-LUR sequences suggests that M. trossulus recolonized the NW Atlantic from the northeast Pacific subsequent to a demographic expansion in the Pacific that occurred ~96,000 years before present (ybp). Estimates of timing of divergence for Pacific and NW Atlantic populations and the time since expansion among NW Atlantic sequence clades indicate that M. trossulus arrived in the NW Atlantic more recently, between 20,000 and 46,000 ybp. Given that these estimates overlap with the dates of peak ice in the NW Atlantic during the last glacial maximum (LGM, ~18,000–21,000 ybp), we suggest that colonization of the NW Atlantic by M. trossulus occurred during, but more likely just subsequent to, the LGM and was followed by rapid temporal and spatial expansion in the region.  相似文献   

6.
Although Pleistocene glacial cycles are regularly used to explain many aspects of the demographic history of coastal marine species, the present study is one of few to test a priori predictions about these effects. Nucleotide sequence variation in the cytochrome b gene of the mtDNA and allele frequency variation at intron loci in the nDNA were compared between two species of Arripis (Australian Salmon) that are closely related and biologically similar other than for their allopatric distributions. The results suggest that A. truttaceus, which resides to the west of the Bass Strait, exhibits lower levels of genetic diversity and experienced a severe population bottleneck during the LGM followed by an expansion commencing some 17,000 years ago. In contrast, the population of A. trutta, which resides to the east of the Bass Strait, appears to have been largely unaffected by the LGM and has been expanding over the past 100,000 years or more. These results are consistent with a priori predictions, based on paleo-oceanographic data, that the demographic history of A. truttaceus has been more strongly affected by glacial periods by virtue of its distribution to the west of Bass Strait. Data on two other congeners are also presented to provide context for the results for A. trutta and A. truttaceus.  相似文献   

7.
Randomly amplified polymorphic DNA (RAPD) banding patterns were compared between samples of the netted dogwhelk Nassarius reticulatus from 11 locations along the NW Iberian Peninsula coast. To detect if rias (estuaries formed by drowned river valleys) might promote genetic differentiation, five sampling sites were located within a ria (ria of Muros) and the remaining six were scattered along open-coast areas at increasing distances from the ria mouth. Population differentiation statistics (Φ-values) were estimated using a hierarchical analysis of molecular variance (AMOVA) with samples sorted into two groups: open-coast and ria populations. Despite a high potential to disperse, AMOVA demonstrated a modest, statistically significant genetic heterogeneity among N. reticulatus populations. Most of the genetic structure resided in differences among open-coast populations; ria populations were genetically homogeneous. No obvious geographical pattern was detected for the pairwise genetic distances (non-metric multidimensional scaling; UPGMA tree; Mantel test). Unlike previous studies with other species at a variety of estuarine systems other than rias, there was no evidence that the ria of Muros may enhance the genetic divergence of N. reticulatus populations. This discrepancy is discussed in relation to the biological features of the species (high dispersal potential and a preference for mid-low estuarine habitat) and the strong hydrographic connectivity between ria and neighbouring off-shore waters.  相似文献   

8.
The aim of this work was to define the phylogeographic patterns of the two species of polychaete Eunicidae, Lysidice ninetta Audouin and Milne Edwards and Lysidice collaris Grube, both associated as sheath borers to the Mediterranean seagrass Posidonia oceanica, and with reference to their different origin and their actual geographic distribution. L. ninetta is distributed in the Atlantic and in the Mediterranean Sea while L. collaris is a tropical species, whose introduction into the Mediterranean Sea through the Suez Canal (lessepsian migrant) has been hypothesized in recent years. The two species have been often confused in the past, although they appear morphologically distinct. They share the same microhabitat (Posidonia sheaths) and they co-exist along a broad bathymetric range (1–30 m). Several populations for both taxa were sampled all along the coast of the Mediterranean basin. A variable no coding region of nuclear DNA (rDNA, ITS1) and a portion of a more conservative coding region of mitochondrial DNA (sub-unit one of citochrome oxidase, COI) were used as molecular markers. Both markers confirmed the separation between the two species. Low intraspecific polymorphism was present in L. collaris, together with absence of phylogeographic structure. In L. ninetta, instead, the presence of intraspecific cryptic lineages, sympatric in some sites, was recorded. Clustering of single populations in the two main clades was not always consistent between markers. The mitochondrial COI region showed more resolution at the given spatial scale. Our results suggest that Lysidice collaris could be recently introduced into the Mediterranean Sea from one or more separate events. On the other hand, for L. ninetta one could presume a re-colonization of the Mediterranean basin from the Atlantics, after the Messinian crisis (dry-out of the Mediterranean Sea, 5.5 my) with the subsequent separation of intraspecific lineages. The phylogeographic patterns of both Lysidice spp. are disjoined with respect to that of the host plant, P. oceanica. The obtained results suggest that environmental constraints and evolutionary history of these polychaetes and their host plant act in different ways to determine their actual genetic spatial structure.  相似文献   

9.
The genetic structure of the flounders Platichthys flesus L. and P. stellatus Pallas was investigated on different spatial scales through analysis of allozyme variation at 7 to 24 polymorphic loci in samples collected from different regions (Baltic Sea, North Sea, Brittany, Portugal, western Mediterranean, Adriatic Sea, Aegean Sea and Japan) in 1984 to 1987. No geographic variation was evident within a region. Some pattern of differentiation by distance was inferred within the Atlantic, while the Mediterranean comprised three geographically isolated populations and was itself geographically isolated from the Atlantic (fixed allele differences at up to three loci were found among P. flesus populations from the Atlantic, the western Mediterranean, the Adriatic Sea, the Aegean Sea and also P. stellatus from the coast of Japan). Sea temperature during the reproductive period probably acts as a barrier to gene flow between populations. Genetic distances among European flounder populations (P. flesus) were higher than, or of the same magnitude as, the genetic distance between Pacific (P. stellatus) and European flounder populations, suggesting that P. flesus is paraphyletic and/or there is no phylogenetic basis to recognising P. stellatus as a different species. The divergence between P. flesus and P. stellatus was thus inferred to be more recent than the divergence between the present P. flesus populations from the NE Atlantic and eastern Mediterranean. The eastern Mediterranean populations are thought to originate from the colonisation of the Mediterranean by a proto-P. flesus/P. stellatus ancestor, whereas the present western Mediterranean population has undergone a more recent colonisation event by P. flesus. Patterns of mitochondrial DNA variation, established on a smaller array of P. flesus samples, were in accordance with the geographic patterns inferred from the allozyme survey. In addition, they supported the hypothesis of a two-step colonisation of the western Mediterranean. These results contribute to our understanding of the biogeography of the Mediterranean marine fauna, especially the group of boreal remnants to which P. flesus belongs. Received: 7 February 1997 / Accepted: 26 March 1997  相似文献   

10.
The Almería-Oran Oceanographic Front (AOOF) has been proposed as an effective marine barrier to gene flow between the NE Atlantic Ocean and the Mediterranean Sea for several species. Previous studies using allozymes and mitochondrial DNA have reported a scenario of secondary intergradation between populations of Mytilus galloprovincialis from those basins, with the allelic frequencies of some loci showing abrupt clinal patterns across the AOOF. In this study, we aimed at testing the congruence between six neutral polymorphic microsatellites versus previous data on allozymes and mtDNA-RFLPs, at depicting the population structure of this species in the Iberian Peninsula. Microsatellite genotyping was scored on 17 samples of mussels collected in the Iberian coast, including some areas not sampled before. Microsatellites exhibited larger intrabasin diversity (F SC = 1.72%, ), similar interbasin differentiation (F CT = 2.81%) and fewer allelic clines than allozymes or mtDNA haplotypes. These results fully support the scenario of secondary intergradation with some ongoing gene flow between basins, as proposed in previous analyses. Moreover, this congruence between markers and analyses separated by a 12-year period (1988–2000) confirm the temporal stability of this marine barrier at shaping the Iberian phylogeographic break in M. galloprovincialis. In addition, the genetic continuity between the NE Atlantic (Portugal) and the Alboran Sea seems to be warranted across the Gulf of Cadiz and the Gibraltar strait after the present microsatellite data. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Phylogeographic patterns among coastal fishes are expected to be influenced by distinct ecological, biological and life history traits, along with historical events and oceanography (past and present). This study focuses on the broad range phylogeography of the Montagu’s blenny Coryphoblennius galerita, a species with well-known ecological features, strictly tied to rocky environments and with limited dispersal capability. Eleven locations from the western Mediterranean to the Bay of Biscay (including the Macaronesian archipelagos) were sampled. Mitochondrial DNA control region (CR) and the first intron of the S7 ribosomal protein gene were used to address the population structure, the signatures of expansion/contraction events retained in the genealogies and potential glacial refugia. The genetic diversity of the Montagu’s blenny was high throughout the sampled area, reaching maximum values in the Mediterranean and western Iberian Peninsula. The results confirmed a marked structure of C. galerita along the sampled area, with a major separation found between the Mediterranean and the Atlantic populations, and suggesting also a separation between the Azores and the remaining Atlantic locations. This study revealed complex and deep genealogies for this species, with Montagu’s blenny populations presenting signatures of events clearly older than the Last Glacial Maximum, with lineages coalescing in early Pleistocene and Pliocene. Three potential glacial refugia where this species might have survived Pleistocene glaciations and from where the recolonization process might have taken place are suggested: South of Iberian Peninsula/North Africa, Mediterranean and Azores.  相似文献   

12.
S. Hirase  M. Ikeda 《Marine Biology》2014,161(3):565-574
Geographic variations in the mitochondrial cytochrome b gene sequence (1,062 nucleotides) of the rocky intertidal goby Chaenogobius gulosus were examined and compared against the phylogeographic pattern of its sympatric sister species Chaenogobius annularis, which we studied previously. We collected C. gulosus specimens from 17 localities around the Japanese Archipelago and Korean Peninsula. Thirty-one haplotypes were obtained. The phylogenetic tree showed three geographical lineages, of which one was distributed along the coast of the Sea of Japan, suggesting that a Pleistocene isolation event in the Sea of Japan affected the genetic divergence of this species, similar to that which was observed in C. annularis. The net nucleotide divergence between the Sea of Japan and Pacific Ocean lineages in C. gulosus was much lower than that of C. annularis. Both traditional molecular clock and hierarchical approximate Bayesian computational models suggest that different divergence events affected the genetic divergences of C. gulosus and C. annularis. Our study on the sister species pair strongly supports multiple isolation events in the Sea of Japan, leading to varying levels of genetic divergence between the Pacific Ocean and Sea of Japan lineages in the Japanese coastal marine species.  相似文献   

13.
The alternation of glacial and interglacial events during the Pleistocene has produced changes in species distribution ranges leading to bottlenecks and alterations of patterns of gene flow. The European stalked barnacle, Pollicipes pollicipes, is a sessile pedunculate cirripede that inhabits the rocky intertidal frame, from Senegal to the northwestern coast of France. In this work, we have analyzed a fragment of the mitochondrial gene cytochrome c oxidase subunit I for 569 individuals of P. pollicipes in order to investigate whether the shifts in climatic conditions that occurred during the Pleistocene influenced the current pattern of distribution of genetic variation of P. pollicipes. A pre-last glacial maximum pattern of demographic expansion was found, in concordance with many other North Atlantic marine species. On the other hand, three potential glacial refugia were identified: North African coasts, northwestern Iberian Peninsula and English Channel/Brittany.  相似文献   

14.
Spatial and temporal population genetic structures of the common sole, Solea solea, were studied in Northeastern Atlantic and Mediterranean Sea populations, using three polymorphic exon-primed intron-crossing (EPIC) markers. Results demonstrated significant multilocus differentiation among Eastern Mediterranean and a group composed by Western Mediterranean and Atlantic populations (θ = 0.150, P < 0.001), but also suggested unrecorded genetic differentiation of the Adriatic Sea population. No pattern of isolation-by-distance was recorded across the range covered by sampling, from the Kattegat to the Aegean Sea. Conversely to genetically structured Mediterranean populations, Atlantic populations ranging from Denmark to Portugal could be considered as representative of the same panmictic unit (θ = 0.009, not significant). Results further demonstrated stability of multilocus genetic structure among temporarily replicated cohort samples [0+, 1+, subadults] from several coastal and estuarine locations from Bay of Biscay, excepted for the amylase locus Am2B3-2 at one location (Pertuis d’Antioche). Despite coherence of such observed patterns of multilocus differentiation with previous allozymic surveys in sole, and with patterns generally obtained for other marine fish species, single-locus results from EPICs indicated divergent coalescence schemes supporting a complex response to ecology and history of sole’s populations. Results stress the use of nuclear genes such as EPIC markers to investigate population structure, but also historical, demographic, and possibly selective processes in marine fishes.  相似文献   

15.
The number and wide variety of southeastern United States marine taxa with significant differentiation between Gulf of Mexico and Atlantic Ocean populations suggests that these taxa may have experienced major vicariance events, whereby populations were subdivided by geological or ecological barriers. The present study compared variation in morphology, allozymes, and mtDNA in Gulf of Mexico and western Atlantic populations of the longwrist hermit crab Pagurus longicarpus Say collected during 1997 and 1998. Combined Atlantic populations had significantly fewer denticles on the second segment of the third maxilliped than did Gulf of Mexico populations, and the mean ratio of dactyl length to propodus length was significantly greater in the Atlantic crabs than in the Gulf of Mexico crabs. Allozyme allele frequencies at three loci showed genetic differentiation between a Gulf of Mexico population and two Atlantic populations. Analysis of mtDNA sequence data revealed a clear reciprocal monophyly between Gulf and Atlantic populations, with an estimated divergence age of ~0.6 million years ago. This estimated age of divergence is significantly more recent than an age previously estimated for its congener Pagurus pollicaris (~4 million years ago), suggesting that species with a similar genetic break between Gulf and Atlantic populations may not necessarily share an identical history. Surprisingly, there is evidence of geographic subdivision within Atlantic populations of P. longicarpus along the east coast of North America. This differentiation is especially strong between Nova Scotia and southern populations, suggesting that the Nova Scotia population may represent survivors from a northern refugium during the last glacial maximum.  相似文献   

16.
Geographical variations in the numbers, biomass and production of euphausiids and the contribution of common species to the total are described from samples taken during 1966 and 1967 in the North Atlantic Ocean and the North Sea by the Continuous Plankton Recorder at 10 m depth. Euphausiids were most abundant in the central and western North Atlantic Ocean and the Norwegian Sea. Thysanoessa longicaudata (Krøyer) was numerically dominant. Biomass was greatest in the Norwegian Sea and the north-eastern North Sea where Meganyctiphanes norvegica (M. Sars) accounted for 81 and 59%, respectively, of the total biomass. Production was highest off Nova Scotia and in Iberian coastal waters; the dominant species were T. raschi (M. Sars) in the former area and Nyctiphanes couchi (Bell) in the latter. The mean P:B ratios were correlated with temperature.  相似文献   

17.
Evolutionary diversification of the broadly distributed copepod sibling species complex Eurytemora affinis has been documented in the northern hemisphere. However, the fine scale geographic distribution, levels of genetic subdivision, evolutionary, and demographic histories of European populations have been less explored. To gain information on genetic subdivision and to evaluate heterogeneity among European populations, we analyzed samples from 8 locations from 58° to 45°N and 0° to 23°E, using 549 base pairs of the mitochondrial cytochrome oxidase subunit I (COI) gene. We discovered three distinct lineages of E. affinis in Western Europe, namely the East Atlantic lineage, the North Sea/English Channel (NSEC) lineage, and the Baltic lineage. These geographically separated lineages showed sequences divergence of 1.7–2.1%, dating back 1.9 million years (CI: 0.9–3.0 My) with no indication of isolation by distance. Genetic divergence in Europe was much lower than among North American lineages. Interestingly, genetic structure varied distinctively among the three lineages: the East Atlantic lineage was divided between the Gironde and the Loire populations, the NSEC lineage comprised one single population unit spanning the Seine, Scheldt and Elbe rivers and the third lineage was restricted to the Baltic Proper (Sweden). We revealed high haplotype diversity in the East Atlantic and the Baltic lineages, whereas in the NSEC lineage haplotype diversity was comparatively low. All three lineages showed signs of at least one demographic expansion event during Pleistocene glaciations that marked their genetic structure. These results provide a preliminary overview of the genetic structure of E. affinis in Europe.  相似文献   

18.
The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental‐scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta‐analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post‐glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post‐glacial) should be considered in conservation assessments for regional and national red lists.  相似文献   

19.
Imposex and butyltin body burden were assessed in 2011 along the Basque coast (northern Spain) in two gastropod species (Nassarius reticulatus and Nassarius nitidus) four years after an initial survey in 2007. The aim of this re-survey was to monitor the effectiveness of the European ban on the use of tributyltin (TBT) based antifouling paints on ships’ hulls (EC 782/2003). Imposex levels in 2011 were lower than those determined in 2007 at most of the sampling sites. Accordingly, TBT concentrations in the female body burden of Nassarius reticulatus varied from 43 to 250 ng Sn/g in dry weight in 2011, which was a lower maximum than in 2007. Nevertheless, the results for the butyltin degradation index suggest that there have been recent inputs of TBT within the two main Basque harbours. Overall, the legislative measure is contributing to the reduction of TBT effects on the Basque coast although its presence is still evident.  相似文献   

20.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号