首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
市政工程施工地周边颗粒污染物扩散特征   总被引:1,自引:0,他引:1  
赵勇  于莉  张春会  王谦  经涛  陈桢 《生态环境》2010,19(11):2625-2628
为了解市政施工对周边大气环境的影响,通过测定TSP、PM10、PM2.5、PM1等指标,研究了施工工地附近颗粒污染物随天气条件、气象要素、距施工点距离的变化规律,结果表明:(1)粒径较大的颗粒物质量浓度受气象要素的影响较明显,大风和晴天的ρ(TSP)、ρ(PM10)远高于阴雨天;随风速增大,ρ(TSP)、ρ(PM10)、ρ(PM2.5)显著升高。(2)小粒径颗粒物(PM1)受天气条件的影响不明显,湿度、风速变化对PM1影响较小。(3)距离施工工地越远,4种颗粒物质量浓度越低,其中ρ(TSP)、ρ(PM10)、ρ(PM2.5)随距离下降较快。(4)不同施工阶段颗粒物污质量浓度异较大,挖槽阶段颗粒物污染要高于结构装修阶段。  相似文献   

2.
为了探讨景观生态林对大气颗粒物的调控作用,以北京大兴区景观生态林为例(主要树种为旱柳Salix matsudana),研究不同季节、不同天气条件下景观生态林内大气颗粒物质量浓度差异以及林内和林外质量浓度对比。于2013年7月至2014年5月,分四季选择不同天气类型,采用水平同步监测法对林内和林外两个监测点3种粒径大气颗粒物(TSP、PM10和PM2.5)质量浓度和气象因子进行每日10 h的连续监测(8:00─18:00)。结果表明,(1)晴朗天气景观生态林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均处于较低水平,分别为(61.53±21.73)~(174.32±36.01)μg·m-3、(28.91±10.34)~(94.87±20.45)μg·m-3和(6.29±3.86)~(23.91±12.29)μg·m-3;多云、扬尘、雾霾和雾霭天气颗粒物质量浓度较高,污染明显加重,雾霾天气下ρ(PM2.5)的增加效果更为明显,而扬尘天气下ρ(TSP)显著增加。(2)雾滴对于PM2.5与PM10具有一定的湿清除作用,也可以与霾粒子共同作用形成相对稳定的雾霭天气,其颗粒物污染程度高于其他天气状况,此时以粒径为2.5~10μm的颗粒物污染为主。(3)夏、秋和春季晴朗微风天气(风速≤3 m·s-1)和扬尘天气林内ρ(TSP)和ρ(PM10)显著低于林外,多云、轻微至轻度雾霾天气,林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均显著低于林外,晴朗大风(风速5 m·s-1)和雾霭天气林内ρ(TSP)和ρ(PM10)不显著高于林外,雾霭天气林内ρ(PM2.5)显著高于林外;冬季不同天气下ρ(TSP)、ρ(PM10)和ρ(PM2.5)林内和林外对比没有明显规律。(4)空气相对湿度、风速和风向是观测时段内影响颗粒物质量浓度的主要因子。ρ(PM2.5)与相对湿度呈线性正相关,而与风速呈非线性负相关,偏南风对颗粒物主要起输送和积累作用,偏北风对颗粒物起到稀释和扩散作用。相对于TSP和PM10,PM2.5更易受近地面气象条件的影响而堆积或扩散。  相似文献   

3.
一次颗粒物的粒径分布及化学组分等对雾霾形成和健康具有显著影响.为了认识一次颗粒物的粒径分布,本文基于颗粒物相关理论计算,研制了一套颗粒物再悬浮分级采样装置,并对其运行稳定性进行了评价.结果表明,对TSP、PM_(10)、PM_(2.5)样本质量进行方差分析,所得F值分别为0.42、0.07和1.34,远远小于F_(0.95)(2,17)=3.59;对PM10占TSP比重、PM2.5占PM10比重进行方差分析,F值为0.53,远远小于F_(0.95)(9,19).说明颗粒物在再悬浮腔体中能够均匀分布,该颗粒物再悬浮采样装置可以满足一次颗粒物的分级采样.  相似文献   

4.
西安市大气颗粒物中水溶性无机离子的季节变化特征   总被引:18,自引:0,他引:18  
用离子色谱法对11种无机水溶性离子(Na+,NH4+,K+,Mg2+,Ca2+,F-,Cl-,Br-,NO-2,NO-3和SO2-4)进行分析,探讨大气颗粒物中水溶性无机组分的季节变化与典型污染(灰霾、浮尘、燃烧秸秆和燃放烟花)的理化特性.结果表明,西安市大气中PM2.5和TSP的日均质量浓度分别为167.1和382.0μg·m-3,PM2.5占TSP总质量浓度的44%.PM2.5和TSP中无机水溶性离子组分的年均值分别为75.2μg·m-3和101.7μg·m-3.PM2.5中水溶性离子组分占PM2.5总质量浓度的45%左右,TSP中水溶性离子组分占TSP总质量浓度的30%左右.各种水溶性离子的来源和形成机理不同,其季节变化趋势和粒径分布也不同.典型污染事件期间,颗粒物污染特征与平时相比有很大差异:雾霾时PM2.5和TSP的质量浓度都显著增加,主要污染组分为二次污染离子NH+4,NO-3和SO2-4;浮尘发生时,大气颗粒物中人为污染组分会大大减少,而来自沙尘传输和地面扬尘等的地壳物质显著增加;燃烧秸秆对大气颗粒物中K+和Cl-的影响最大;燃放烟花时K+,Mg2+和Ca2+的质量浓度显著增加.  相似文献   

5.
重庆市主城区春夏季不同粒径颗粒物污染特征分析   总被引:2,自引:0,他引:2  
采用多通道采样器,采集重庆市主城区PM1.0、PM2.5和PM103种粒径的颗粒物样品,结果显示采样期间PM1.0、PM2.5和PM10日浓度均值分别为0.057 mg/m3、0.075 mg/m3和0.120 mg/m3,主城区颗粒物污染较为严重。对3种粒径颗粒物样品中的碳组分、水溶性组分以及无机污染元素组分进行分析...  相似文献   

6.
城市绿地空气颗粒物及其与空气微生物的关系   总被引:13,自引:0,他引:13  
通过对北京市元大都遗址公园内不同林地类型及其旁边道路空气颗粒物及微生物浓度的研究,得出:空气颗粒物中直径大于10μm的粗颗粒所占比例较小,而人可以通过呼吸吸入的PM10所占比例相对较高,对人体最为有害的PM2.5所占比例也很小;对照点(道路)的PM10、TSP浓度都显著高于其临近绿地的浓度,可见绿地具有显著的滞尘作用;元大都公园各林地中PM10浓度都超过了国家环境质量标准中的Ⅱ级标准,是标准的1.36~2.54倍,对人体最为有害的PM2.5浓度只有个别绿地超标;空气微生物浓度与空气TSP、PM10具有极显著相关性,与PM2.5、PM1相关关系不显著。  相似文献   

7.
城市大气颗粒物表面半醌自由基的测定及特征分析   总被引:2,自引:0,他引:2  
采集上海市城区和郊区两个典型站位的大气颗粒物样品,通过二氯甲烷萃取分离并利用电子自旋共振波谱技术(ESR)分析测定吸附在颗粒物表面的稳定自由基.结果显示,测试样品的波谱特征表现为显著的三重信号峰,且g因子值均在2.00379—2.00395范围内,通过与醌类标准物质图谱比对,可以判断颗粒物表面至少吸附1种邻位半醌自由基.对自由基分布特征研究发现,自由基浓度的时空变化和粒径分布特征显著:闵行采样点的半醌自由基浓度远高于普陀采样点;在季节变化上表现为夏秋季半醌自由基浓度低于冬春季,其中春季最高,夏季最低;半醌自由基在不同粒径颗粒上的分布,呈现PM2.5>PM10>TSP的变化规律,说明自由基更容易富集在细颗粒上.  相似文献   

8.
北京市5种典型植物滞尘特征及影响因素   总被引:1,自引:0,他引:1  
采用室内实验法定量比较北京市5种典型植物(大叶黄杨、月季、榆叶梅、紫薇、五叶地锦)叶片滞留颗粒物以及吸附水溶性离子的能力差异,并从叶表面特征分析差异原因.结果表明,不同植物叶片滞留TSP的能力大小顺序为:五叶地锦紫薇榆叶梅月季大叶黄杨.滞留PM5—10的能力大小顺序为:月季榆叶梅紫薇大叶黄杨五叶地锦.滞留PM5的能力大小顺序为:大叶黄杨月季紫薇榆叶梅五叶地锦.利用离子色谱法等测定颗粒物的化学组分,其主要组分为:有机碳(34.24%)、无机碳(33.45%)、硅(15.43%)、硫酸盐(14.18%)、氯化物(11.75%)、硝酸盐(1.45%),表现出道路环境特征和二次污染特征.在扫描电镜下观察叶表微观结构,发现叶表面有沟槽的五叶地锦和紫薇的滞尘能力较强,叶表气孔密度大的大叶黄杨阻滞细颗粒物能力较强,这从一定程度解释了不同植物阻滞颗粒物能力差异的主要原因.在研究期间内,5种植物叶片上的颗粒物滞留量呈增加趋势.降雨对叶面TSP冲刷作用明显,对PM5—10和PM5的影响较小.  相似文献   

9.
2008年4月至2009年7月对北京市和广州市三种典型交通道路(峡谷道路、交叉路口、开阔道路)共进行7次连续监测,研究结果发现交通道路空气中PM10和TSP浓度与湿度、温度相关关系不明显,但和车流量以及对照点相应的悬浮颗粒物浓度显著正相关(5%显著水平).北京市PM10背景浓度值对交通道路空气中PM10起主导影响作用.广州市交通道路空气中PM10浓度值相较北京市更容易受交通道路的影响.北京市和广州市峡谷道路PM10和TSP浓度呈线性正相关,拟合回归方程系数为1.262(北京市)和1.316(广州市).  相似文献   

10.
北京市冬季大气气溶胶中PAHs的污染特征   总被引:2,自引:0,他引:2  
利用大流量颗粒物采样器采集了2005-2006年冬季北京市大气气溶胶中PM10和PM2.5样品,采用气相色谱/质谱技术对样品中的多环芳烃进行检测.结果表明:北京市冬季大气颗粒物PM10和PM2.5中PAHs总量分别为520.5±476.9ng·m-3和326.8±294.3ng·m-3,且大部分存在于细粒子中,4环以上的稠环芳烃占总浓度的87%.根据荧蒽/芘等比值指标判别,北京市冬季PAHs主要以燃煤排放为主,其次是石油燃烧交通排放.风速增大和太阳辐射曝辐量增强,都会降低颗粒物中多环芳烃浓度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号