首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
给水深度处理中臭氧副产物的产生及控制   总被引:8,自引:0,他引:8  
就给水深度处理中臭氧副产物的产生及其化学过程、控制臭氧副产物生成的技术措施等问题进行了探讨。采用臭氧深度处理时,会产生以甲醛为代表的有机副产物,以溴酸根为代表的无机副产物。副产物的形成与溴离子浓度、水中有机物种类和浓度、pH值、臭氧投加量、温度和碱度等因素有关。在应用臭氧进行深度处理时,应根据不同条件,采取适宜的措施,以减少臭氧副产物的生成。  相似文献   

2.
The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micro-polluted surface water. A pilot scale plant with the capacity of 120 m3 per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m2 and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HoB) and neutral (HoN), weakly hydrophobic acid (WHoA) and hydrophilic matter (HiM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV254, 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroacetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1-trichloroacetone (TCP) precursor and 63% of trichloronitromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000–3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200–500 Da. DOC had a close linear relationship with the formation potential of DBPs.  相似文献   

3.
This research investigates the performances of RuO2/ZrO2-CeO2 in catalytic ozonation for water treatment. The results show that RuO2/ZrO2-CeO2 was active for the catalytic ozonation of oxalic acid and possessed higher stability than RuO2/Al2O3 and Ru/AC. In the catalytic ozonation of dimethyl phthalate (DMP), RuO2/ZrO2-CeO2 did not enhance the DMP degradation rate but significantly improved the total organic carbon (TOC) removal rate. The TOC removal in catalytic ozonation was 56% more than that in noncatalytic ozonation. However this does not mean the catalyst was very active because the contribution of catalysis to the overall TOC removal was only 30%. The adsorption of the intermediates on RuO2/ZrO2-CeO2 played an important role on the overall TOC removal while the adsorption of DMP on it was negligible. This adsorption difference was due to their different ozonation rates. In the catalytic ozonation of disinfection byproduct precursors with RuO2/ZrO2-CeO2, the reductions of the haloacetic acid and trihalomethane formation potentials (HAAFPs and THMFPs) for the natural water samples were 38%–57% and 50%–64%, respectively. The catalyst significantly promoted the reduction of HAAFPs but insignificantly improved the reduction of THMFPs as ozone reacts fast with the THMs precursors. These results illustrate the good promise of RuO2/ZrO2-CeO2 in catalytic ozonation for water treatment.  相似文献   

4.
This article reports for the first time that fullerene (nC60) can form chlorinated disinfection by-products in aqueous systems at ambient temperature. The ability of nC60 to form colloidal suspensions in aqueous media increases the chance that these particles will migrate in the environment and then in drinking water supply systems. Since nC60 is not completely removed by conventional water treatment, any residual nC60 is likely to be oxidized during disinfection process. While the ozonation of nC60 has been studied, little is known about the reaction between nC60 and chlorine. To address this issue, we subjected aqueous nC60 suspensions to chlorination and sequential ozonation/chlorination at ozone dosages of 4.5, 10, 15 and 24 mg O3/mg nC60. The morphology and physicochemical properties of oxidized nC60 aggregates were evaluated by scanning electron microscopy, transmission electron microscopy, UV–visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). We found that while the particles in the as-prepared nC60 were predominantly spheres, the ozonation of nC60 resulted in the formation of irregularly shaped aggregates. The concentration of atomic carbon found by XPS in the nC60 samples decreased from 92 % for the as-prepared nC60 to 50 % for the aggregates ozonated at 24 mg O3/mg nC60 and then chlorinated at 68 mg Cl2/L and allowed to react for 100 min. The presence of Cl atoms covalently bonded to C atoms was confirmed by XPS peaks corresponding to a binding energy (E b) of 200.1–202.4 eV. This demonstrates the need to better assess and monitor the formation of potentially toxic chlorinated disinfection by-products from carbon nanomaterials during water treatment.  相似文献   

5.
The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.  相似文献   

6.
Disinfection by-products (DBPs) are regulated in drinking water in a number of countries. This critical review focuses on the issues associated with DBP regulatory compliance, including methods for DBP analysis, occurrence levels, the regulation comparison among various countries, DBP compliance strategies, and emerging DBPs. The regulation comparison between China and the United States (US) indicated that the DBP regulations in China are more stringent based on the number of regulated compounds and maximum levels. The comparison assessment using the Information Collection Rule (ICR) database indicated that the compliance rate of 500 large US water plants under the China regulations is much lower than that under the US regulations (e.g. 62.2% versus 89.6% for total trihalomethanes). Precursor removal and alternative disinfectants are common practices for DBP regulatory compliance. DBP removal after formation, including air stripping for trihalomethane removal and biodegradation for haloacetic acid removal, have gained more acceptance in DBP control. Formation of emerging DBPs, including iodinated DBPs and nitrogenous DBPs, is one of unintended consequences of precursor removal and alternative disinfection. At much lower levels than carbonaceous DBPs, however, emerging DBPs have posed higher health risks.  相似文献   

7.
• Annual AOCs in MBR effluents were stable with small increase in warmer seasons. • Significant increase in AOC levels of tertiary effluents were observed. • Coagulation in prior to ozonation can reduce AOC formation in tertiary treatment. • ∆UV254 and SUVA can be surrogates to predict the AOC changes during ozonation. As water reuse development has increased, biological stability issues associated with reclaimed water have gained attention. This study evaluated assimilable organic carbon (AOC) in effluents from a full-scale membrane biological reactor (MBR) plant and found that they were generally stable over one year (125–216 µg/L), with slight increases in warmer seasons. After additional tertiary treatments, the largest increases in absolute and specific AOCs were detected during ozonation, followed by coagulation-ozonation and coagulation. Moreover, UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation. Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone. Finally, the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.  相似文献   

8.
为了探究消毒副产物(DBPs)的氧化损伤和神经毒性作用,选择幼年斑马鱼作为模式生物,研究了市政污水处理厂二级出水和经次氯酸钠(NaClO)消毒后的二级出水对斑马鱼体内过氧化氢酶(CAT)活性、丙二醛(MDA)含量和乙酰胆碱酯酶(Ach E)活性的影响。结果表明,暴露时间达到10 d时,MDA含量显著高于对照,且消毒后MDA含量增幅(91.43%)显著高于消毒前(44.36%);暴露时间达到15 d时,CAT活性被显著抑制,且消毒后抑制率(40.22%)显著高于消毒前(15.56%);说明消毒后暴露组对斑马鱼的氧化损伤强于消毒前。另外,消毒前后污水对Ach E活性抑制率分别为38.49%和48.50%,说明消毒后污水对斑马鱼的神经毒性更大。因此,经NaClO消毒后的市政污水处理厂二级出水中DBPs对斑马鱼的抗氧化防御系统和神经系统具有潜在影响。  相似文献   

9.
This article reports the first identification of paraben-chlorinated derivatives in river water. Parabens are widely used as preservatives in pharmaceuticals and personal care products. Parabens can be easily chlorinated by chlorinated tap water. The resulting chlorinated derivatives might pose a higher potential risk to humans and ecosystems than the corresponding parent parabens. However, the occurrence of such derivatives in rivers remains unknown so far. We studied 23 parabens and their chlorinated derivatives from rivers receiving effluents from sewage treatment plants in Shizuoka city, in the central Pacific region of Japan. The compounds were extracted by solid-phase extraction with a styrene polymer sorbent, trimethylsilyl-derivatized, and then identified by gas chromatography–mass spectrometry. Six chlorinated parabens and their primary degradation products, two chlorinated hydroxybenzoic acids, were found for the first time in river water. Moreover, in river water, chlorinated derivatives preferentially partition into the suspended-solid phase.  相似文献   

10.
The reaction mechanism and pathway of the ozonation of 2,4,6-trichlorophenol (2,4,6-TCP) in aqueous solution were investigated. The removal efficiency and the variation of H2O2, Cl? formic acid, and oxalic acid were studied during the semi-batch ozonation experiments (continuous for ozone gas supply, fixed volume of water sample). The results showed that when there was no scavenger, the removal efficiency of 0.1 mmol/L 2,4,6-TCP could reach 99% within 6 min by adding 24 mg/L ozone. The reaction of molecular ozone with 2,4,6-TCP resulted in the formation of H2O2. The maximal concentration of H2O2 detected during the ozonation could reach 22.5% of the original concentration of 2,4,6-TCP. The reaction of ozone with H2O2 resulted in the generation of a lot of OH? radicals. Therefore, 2,4,6-TCP was degraded to formic acid and oxalic acid by ozone and OH? radicals together. With the inhibition of OH? radicals, ozone molecule firstly degraded 2,4,6-TCP to form chlorinated quinone, which was subsequently oxidized to formic acid and oxalic acid. Two reaction pathways of the degradation of 2,4,6-TCP by ozone and O3/OH? were proposed in this study.  相似文献   

11.
This research work was performed to evaluate ozonation and granular activated carbon adsorption processes from the view‐point of controlling the formation of disinfection by products (DBPs). Both the humic acid and raw water were first preozonated and then adsorbed on the activated carbon to assess the potency for removal of total organic carbon (TOC) and DBPs. The disinfection by‐product including THMs and HAAs, in principle, can be successfully removed through a use of the ozonation and granular activated carbon (GAC) adsorption processes. However, in practice dealing with the raw water, it is necessary to introduce the pilot‐plant to obtain the design and operation guidelines for the water treatment plant through the ICA (Instrumentation Control and Automation) program in our future research work.  相似文献   

12.
GO or RGO promotes bromate formation during ozonation of bromide-containing water. CeO2/RGO significantly inhibits bromate formation compared to RGO during ozonation. CeO2/RGO shows an enhancement on DEET degradation efficiency during ozonation. Ozone (O3) is widely used in drinking water disinfection and wastewater treatment. However, when applied to bromide-containing water, ozone induces the formation of bromate, which is carcinogenic. Our previous study found that graphene oxide (GO) can enhance the degradation efficiency of micropollutants during ozonation. However, in this study, GO was found to promote bromate formation during ozonation of bromide-containing waters, with bromate yields from the O3/GO process more than twice those obtained using ozone alone. The promoted bromate formation was attributed to increased hydroxyl radical production, as confirmed by the significant reduction (almost 75%) in bromate yield after adding t-butanol (TBA). Cerium oxide (less than 5 mg/L) supported on reduced GO (xCeO2/RGO) significantly inhibited bromate formation during ozonation compared with reduced GO alone, and the optimal Ce atomic percentage (x) was determined to be 0.36%, achieving an inhibition rate of approximately 73%. Fourier transform infrared (FT-IR) spectra indicated the transformation of GO into RGO after hydrothermal treatment, and transmission electron microscope (TEM) results showed that CeO2 nanoparticles were well dispersed on the RGO surface. The X-ray photoelectron spectroscopy (XPS) spectra results demonstrated that the Ce3+/Ce4+ ratio in xCeO2/RGO was almost 3‒4 times higher than that in pure CeO2, which might be attributed to the charge transfer effect from GO to CeO2. Furthermore, Ce3+ on the xCeO2/RGO surface could quench Br⋅ and BrO⋅ to further inhibit bromate formation. Meanwhile, 0.36CeO2/RGO could also enhance the degradation efficiency of N,N-diethyl-m-toluamide (DEET) in synthetic and reclaimed water during ozonation.  相似文献   

13.
Population dynamic studies on phytoplankton cultures   总被引:3,自引:0,他引:3  
The use of ozone as an oxidative supplement to biological filtration and to control epizootic microbial outbreaks coincident with maintaining a biological filter was investigated in a 2,271-1 (600 gallon) closed marine-water system. Under conditions of a relatively large biomass load (1.82 kg/3801), filter-bed effluent levels of total ammonia (0.135±0.01 ppm), un-ionized ammonia (0.0074±0.0006 ppm) and nitrite (0.17±0.01 ppm) were maintained within acceptable limits. Reservoir ozonation (100 mg/h/380 l) further significantly reduced (P<0.005) these levels. Nitrates were significantly elevated (P<0.005) with ozonation. Cessation of ozonation elevated total ammonia, un-ionized ammonia and nitrite levels above acceptable limits within 24 h. Resuming ozonation rapidly reversed this trend. Ozone reduced the microbial content of the culture water. Ozonation is suggested as a means of maintaining oxidative flexibility when used as a supplement to biological filtration. Further, prevention of epizootic microbial outbreaks may be accomplished without danger to the biological filter provided a proper system design is utilized.Contribution No. 342, Department of Biology.  相似文献   

14.
This research utilized the Ames test to determine the mutagenicity of water treated by advanced processes, including ozonation and granular activated carbon (GAC). Raw water samples for this research included those obtained from the Pan Hsin waterworks as well as samples containing humic acids. Treated samples were collected from the pilot‐scale advanced treatment plant. The Ames test was used to measure the mutagenicity of the water after each treatment process. For the Pan Hsin raw water samples treated with ozone or GAC, it was indicated that, regardless of whether samples were preozonated or not, they all showed a mutagenic potency less than 2 once the S9 enzyme was added. This level of mutagenicity is insignificant. The prepared humic acid samples, on the other hand, demonstrated a significant reduction in mutagenicity after the pre‐ozonation process, indicating that preozonation can lower the degree of mutagenicity. Furthermore, the mutagenicity of the prepared humic acid samples gradually decreased after the advanced treatment process. However, when chlorine was added later to these samples, the mutagenicity increased again. This research shows that the use of O3/GAC processes to treat water can successfully lower mutagenicity, indicating a great potential for applications in the treatment of drinking water.  相似文献   

15.
Ozone, chlorine and sodium hypochlorite are commonly used as disinfecting agents for drinking water production. The reaction pathways of ozonation and chlorination of o-methoxybenzoic acid in aqueous solution were studied using gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC). The results show that less than 1% of o-methoxybenzoic acid remains in reaction. The final major products using ozone oxidation are oxalic and glyoxalic acids. Phenols appear only at insufficient ozone levels. Sodium hypochlorite leads to higher levels of primary products. Molecular chlorine leads to the formation of higher amounts of polychlorinated derivatives. Model experiments allow to propose schemes of o-methoxybenzoic acid transformation under the conditions simulating water treatment processes.  相似文献   

16.
铁盐和铝盐混凝剂对消毒副产物的控制作用及机制研究   总被引:4,自引:0,他引:4  
以三氯化铁和硫酸铝为研究对象,探讨了两种混凝剂对三氯甲烷生成量的控制作用及控制机制.结果表明,与硫酸铝相比,三氯化铁可以更好地控制三氯甲烷的生成量,对有机物的去除方面,也具有良好的效果.E4/E6变化表明,三氯化铁和硫酸铝对水中有机物的去除机制不同,硫酸铝主要去除水中大分子的有机物,三氯化铁更倾向于去除水中小分子有机物,而这些小分子有机物通常是消毒副产物的前体物,从而使三氯化铁对消毒副产物的控制作用较硫酸铝明显.  相似文献   

17.
In this study, samples were taken from six conventional water treatment plants for disinfection by‐products analysis. Results from the analysis revealed that trihalomethanes (THMs) concentrations in all samples were below regulatory levels (100 μg/L). Although the national standard for haloacetic acids (HAA5) has not yet been promulgated in Taiwan, samples from two water plants contained HAA5 concentrations exceeding the USEPA limit (MCL of HAA5 of Stage 1, 60 μg/L). THMs and HAA5 were found to be the major disinfection by‐products in all water treatment plants. It was noted that the concentration of HAA5 in most samples was higher than that of the trihalomathanes. However, the formation potential of THM (THMFP) was found to be higher than that of HAA (HAAFP). Good correlation also was found between THMFP (or THMFP) and HAA5 (or THMs). In evaluating the performance of the treatment processes, it was found that conventional water treatment processes followed by activated carbon were effective in removing disinfection by‐products (DBPs) from source water with pre‐ozonation. The treatment processes were at their optimum performance in removing contaminants when O3/TOC0 was held at 0.75.  相似文献   

18.
安全优质饮用水   总被引:11,自引:0,他引:11  
水中的微量元素是人体微量元素的主要来源,而且饮用水的硬度和总溶解性固体和当地居民心脏病的死亡率有确定的正相关性。TDS越高,心脏病发作率越少。健康的水应是去除了有机微污染,三致物质,病原菌,病毒和病原原生动物的,并且含有适量微量元素和矿物质的安全和有益于健康的水。  相似文献   

19.
• SMX was mainly degraded by hydrolysis, isoxazole oxidation and double-bond addition. • Isoxazole oxidation and bond addition products were formed by direct ozonation. • Hydroxylated products were produced by indirect oxidation. • NOM mainly affected the degradation of SMX by consuming OH rather than O3. • Inhibitory effect of NOM on SMX removal was related to the components’ aromaticity. Sulfamethoxazole (SMX) is commonly detected in wastewater and cannot be completely decomposed during conventional treatment processes. Ozone (O3) is often used in water treatment. This study explored the influence of natural organic matters (NOM) in secondary effluent of a sewage treatment plant on the ozonation pathways of SMX. The changes in NOM components during ozonation were also analyzed. SMX was primarily degraded by hydrolysis, isoxazole-ring opening, and double-bond addition, whereas hydroxylation was not the principal route given the low maximum abundances of the hydroxylated products, with m/z of 269 and 287. The hydroxylation process occurred mainly through indirect oxidation because the maximum abundances of the products reduced by about 70% after the radical quencher was added, whereas isoxazole-ring opening and double-bond addition processes mainly depended on direct oxidation, which was unaffected by the quencher. NOM mainly affected the degradation of micropollutants by consuming OH rather than O3 molecules, resulting in the 63%–85% decrease in indirect oxidation products. The NOM in the effluent were also degraded simultaneously during ozonation, and the components with larger aromaticity were more likely degraded through direct oxidation. The dependences of the three main components of NOM in the effluent on indirect oxidation followed the sequence: humic-like substances>fluvic-like substances>protein-like substances. This study reveals the ozonation mechanism of SMX in secondary effluent and provides a theoretical basis for the control of SMX and its degradation products in actual water treatment.  相似文献   

20.
生物流化床预处理对饮用水致突变活性的影响   总被引:4,自引:0,他引:4  
以C市市区内受污染的N河水为原水,在实验室内建立起生物流化床预处理--传统工艺的组合净水工艺。对原水,传统工艺,生物流化床预处理,组合工艺的出水及其相应的氯化出水Ames试验致突变性研究。以RM和水样比活性表示,非氯化水样的结果表明:传统工艺和生物预处理都会使原水的致突变性有所提高,后者的增幅大于前者;生物预处理能使两类致突变物尤其是碱基置换型致突变物发生有利于被后续传统工艺去除的变化,使组合工艺  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号