首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
溴代消毒副产物(Br-DBPs)由于其高细胞毒性和基因毒性被广泛关注.本文介绍了饮用水中多种已知Br-DBPs (溴代甲烷、溴代乙酸、溴代乙腈、溴代乙酰胺、溴代硝基甲烷、溴代乙醛、溴代芳香族DBPs)的检出浓度、结构与毒性.综述了常用消毒方式(氯和氯胺消毒)过程Br-DBPs的生成机理,输配过程对Br-DBPs的生成影响.此外,还讨论了未知Br-DBPs的识别进展以及Br-浓度、pH值、温度、天然有机物等对Br-DBPs生成的影响.由于海水入侵、地质结构变化等原因,水源中的Br-浓度升高会使Br-DBPs增多,溴化物的去除能够有效控制Br-DBPs.本文为今后对Br-DBPs的种类、检测等研究提供了参考,以更好地评估暴露在饮用水中的Br-DBPs的健康风险.  相似文献   

2.
利用离子色谱法检测臭氧处理的饮用水中痕量BrO^—3   总被引:6,自引:0,他引:6  
阎炎  宋强 《环境化学》1997,16(3):292-293
70年代,研究发现饮用水处理过程中使用的Cl_2容易产生致癌物,例如三卤甲烷等.因此,环境保护部门和饮用水处理部门开始进行多种尝试,改变消毒方法,力争将危害身体的消毒副产物降至最低.臭氧消毒最有可能代替氯化消毒,然而臭氧消毒会将Br~-氧化成Bro_3~-,这使源水中Br~-的存在成为一个潜在的问题.即使浓度低至μg·1~(-1)级,世界卫生组织和美国国家环保局(U.S.A.EPA)将BrO_3~-列为潜在致癌物.许多有关的法规制订部门都将潜在致癌物危害人体健康的标准定在10~(-5)g·1~(-1)甚至更低,美国国家环保局认为臭氧处理的饮用水中BrO_3~-的浓度应控制在1μg·1~(-1)以下.因此,分析方法必须能够对此浓度级的BrO_3~-定量,以便在设计臭氧处理工艺时将此污染物的浓度降至最低.  相似文献   

3.
《环境化学》2012,31(1):132
溴离子是自然界中较为常见的一种阴离子,普遍存在于各种水体当中.溴离子在消毒过程中很容易被氯或者次氯酸氧化为次溴酸,从而和天然有机物反应生成溴代消毒副产物.以往的研究表明,溴代消毒副产物的细胞毒性及遗传毒性比其氯代同系物要高.饮用水中存在大量具有较高毒性的溴代消毒副产物,然而仅有很少一部分能够被鉴定出来并进行定性分析.大量的极性溴代消毒副产物仍属未知.  相似文献   

4.
查晓松  于颖奇 《环境化学》2023,(5):1414-1423
本研究采用鱼油作为模拟化合物,模拟微污染原水中广泛存在的生物源有机物的脂肪类组成成分,考察氯胺消毒过程中溴代和碘代含氮消毒副产物(nitrogenous disinfection by-products,N-DBPs)的生成情况.结果表明,鱼油经氯胺消毒后,生成的溴代和碘代N-DBPs主要包括一溴乙腈(bromoacetonitrile, BAN)、二溴乙腈(dibromoacetonitrile, DBAN)、一溴硝基甲烷(bromonitromethane,BNM)、一碘乙腈(iodoacetonitrile,IAN).其中,在本研究考察范围内,BAN、DBAN与BNM的生成量会随溴离子和总有机碳(Total Organic Carbon,TOC)浓度的增加而增加;当溴离子浓度为5 mg·L-1,TOC为20 mg·L-1时,BAN、DBAN与BNM的最大生成量分别为71.15、192.36、27.52μg·L-1. IAN的生成量则随碘离子和TOC浓度的增加而增加;当碘离子浓度为0.5 mg·L-1  相似文献   

5.
钟新林 《环境化学》2013,(7):1422-1423
消毒副产物(Disinfection by-products,DBPs)是指用消毒剂对饮用水消毒时,消毒剂与水中含有的天然有机物反应生成的化合物.随着水处理技术的发展,对水处理中产生的各类消毒副产物的研究也日益关注.氯气、漂白粉和臭氧在消毒过程会产生少量对人体健康不利的副产物,如亚氯酸盐、溴酸盐和氯酸盐等.其中溴酸盐是饮用水中臭氧消毒的副产物,已被世界卫生组织和美国EPA列为潜在的致癌物,甚至在含量低至1μg.L-1也有致癌的作用.美国环境保护署(USEPA)和世界卫生组织(WHO)在最新的饮用水法规中规定饮用水中溴酸盐的含量不得超过10μg.L-1.我国最新的饮用水规范中也建议生活饮用水中溴酸盐的最高含量不允许超过10μg.L-1.卤代乙酸(haloacetic acids,HAAs)是饮用水加氯消毒时氯与水中存在的天然有机物反应生成的一类消毒副产物,通  相似文献   

6.
模拟电子垃圾热回收处理过程,将丙烯腈-丁二烯-苯乙烯塑料(ABS)、四溴双酚A(TBBPA)分别与4种金属(Cu、Fe、Zn和Ni)进行混合,在自制的加热装置内开展了不同气氛、不同温度条件下热解实验研究。对产物溴代二噁英(PBDD/Fs)检测显示,2,3,7,8-TBDF、2,3,7,8-TBDD及1,2,3,4,7,8-与1,2,3,6,7,8-Hx BDD为主要产物,其中2,3,7,8-TBDF含量最高,约占总PBDD/Fs的12%~90%。反应生成的8种2,3,7,8-PBDD/Fs浓度范围为0.05~2 082 ng·g-1。在同等实验条件下,温度升高有利于ABS塑料混合物中PBDD/Fs的生成。Cu、Fe、Zn和Ni四种金属都具有催化效应。空气、氮气气氛下热解实验显示,空气气氛下PBDD/Fs的生成量大,2种条件下生成的二噁英总量比值在0.8~99.6之间变化。无金属催化条件下此比值变化范围较小,为0.8~1.5;在金属参与条件下,此比值变化范围加大,为1.2~99.6;其中,在Cu和Fe参与下,此比值较高。各种热解条件下形成的PBDD/Fs都具有PBDFsPBDDs的特征。研究结果说明,虽然无金属参与条件下含TBBPA的ABS热解生成溴代二噁英浓度较低,但金属(如Cu等)存在时,此类污染物的浓度显著增加。  相似文献   

7.
以珠江流域西江中山段的感潮原水为对象,模拟其臭氧预处理、常规处理和臭氧活性炭处理,考察原水预、主臭氧对应投加量时溴酸盐生成情况,构建了预、主臭氧溴酸盐生成经验预测模型.结果表明,在预臭氧过程中,高的DOC、O3及Br-浓度,会增加溴酸盐的生成量,升高pH,提高NH3-N及IC有利于抑制溴酸盐的形成;在主臭氧过程中,升高pH,提高O3及Br-浓度,会增加溴酸盐的生成量,而高的DOC、NH3-N及IC会降低溴酸盐的形成风险.所建模型预测实际水样,发现预、主臭氧预测模型预测误差分别为33.72%和13.22%.  相似文献   

8.
针对含溴离子(Br-)的上海某水厂滤后水的高级氧化处理,考察了紫外/过氧化氢(UV/H_2O_2)技术对UV254和总有机碳(TOC)的削减效率、控制消毒副产物溴酸根(Br O-3)和三卤甲烷(THMs)的生成情况,同时研究了水中溴离子(Br-)浓度的改变对UV/H_2O_2处理效果的影响.结果表明,UV/H_2O_2处理工艺不产生Br O-3;500 m J·cm-2的UV剂量和5 mg·L-1H_2O_2投加量下,出水UV254和TOC分别降低了35%和21%;后续氯消毒过程中的THMs生成势随H_2O_2投加量的增加显著降低,500 m J·cm-2的UV剂量下,H_2O_2投加量为5 mg·L-1和10 mg·L-1时,THMs生成势的削减率分别为49.4%和79.9%;水中Br-浓度的改变不影响UV/H_2O_2工艺的运行效果;相比UV,UV/H_2O_2还可使9种农药的降解率提高50%—85%.因此,UV/H_2O_2在含Br-水源水深度处理方面有着较好的应用前景.  相似文献   

9.
甲醛光催化降解与过氧化氢生成的相关性研究   总被引:2,自引:0,他引:2  
分别采用两种光催化剂(TiO2与Pd/TiO2)和三种紫外光源(黑光灯、杀菌灯、臭氧灯)分解水溶液中的甲醛,同时以酶法测定光催化降解过程中生成的低浓度过氧化氢.发现波长较短的紫外光源生成过氧化氢的浓度较高.当以臭氧灯为光源时,无论是否有催化剂存在,生成的过氧化氢浓度都在50mmol·m-3以上,因为185nm以下的紫外光可以直接由水与溶解氧生成臭氧,而后生成过氧化氢.不管有无催化剂存在,在臭氧灯作用下,甲醛溶液中生成的过氧化氢浓度高于纯水中生成的过氧化氢浓度.但是,在以黑光灯或臭氧灯为光源时,上述结果正好相反.此外,对于每种光源而言,当采用Pd/TiO2代替TiO2时,甲醛的分解和过氧化氢的生成都得到加强.甲醛光催化分解速率与相同条件下纯水中过氧化氢的生成速率呈正比,表明光催化降解的活性与光催化生成过氧化氢的能力近似呈正相关.  相似文献   

10.
谷怿宸  曹乐 《环境化学》2022,41(1):144-159
自1997年在死海地区的大气边界层中观测到午间臭氧浓度迅速下降的现象后,研究学者们即对该地区的臭氧耗损现象(ozone depletion events,简称ODEs)展开了研究。而在此之前,大气边界层内的ODEs现象普遍被认为只会发生在极地地区的特殊大气现象。本文综述了关于死海地区ODEs研究的发展历史,主要展示了促使死海ODEs形成的物理化学机理、关于死海地区ODEs的观测和模拟研究,以及死海地区臭氧耗损现象的特点。与极地ODEs类似,造成死海地区的ODEs过程中臭氧耗损的主要化学物质是活性溴化物如氧化溴(BrO)等。但由于死海地区特殊的环境条件,该地区的ODEs在时间尺度上和空间尺度上与极地ODEs存在明显的差异。目前关于死海ODEs的观测研究主要以地面观测为主,并显示相较冬季,死海夏季ODEs的发生频率更高,臭氧耗损也更为明显。而目前关于死海ODEs的模拟研究则以零维和一维模拟为主,模拟中证实了臭氧和BrO之间的负相关关系,并揭示出非均相反应(溴爆炸机制和BrONO2的水解)对于ODEs的重要影响。另外,模拟中还指出了氮氧化物对于ODEs的两面性作用,以及气象条件(如逆温层)对于ODEs产生的影响。现有研究还发现,死海地区特殊的地形、环境条件及其海水中的高溴含量都是促使当地产生ODEs的关键因素。死海ODEs的发生不仅会改变该地区大气边界层中成分(例如汞)的浓度和寿命,也会影响大气的氧化能力,而这些都会对该地区人类的生活和健康产生潜在的作用,因此有必要加深对于该现象的总体认识。  相似文献   

11.
The relatively recent discovery of disinfection by-products has driven the main regulatory organisms to set maximum contaminant levels for certain substances in drinking water. Trihalomethanes can be deemed as the most important group of by-products in chlorinated surface waters. The present work has focused on trihalomethane formation in a full-scale water treatment plant. We studied the effect of several factors, including ozonation, on trihalomethane levels in chlorinated treated water. The treatment scheme also includes an ozonation step. Electronic Publication  相似文献   

12.
Ozone, chlorine and sodium hypochlorite are commonly used as disinfecting agents for drinking water production. The reaction pathways of ozonation and chlorination of o-methoxybenzoic acid in aqueous solution were studied using gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC). The results show that less than 1% of o-methoxybenzoic acid remains in reaction. The final major products using ozone oxidation are oxalic and glyoxalic acids. Phenols appear only at insufficient ozone levels. Sodium hypochlorite leads to higher levels of primary products. Molecular chlorine leads to the formation of higher amounts of polychlorinated derivatives. Model experiments allow to propose schemes of o-methoxybenzoic acid transformation under the conditions simulating water treatment processes.  相似文献   

13.
GO or RGO promotes bromate formation during ozonation of bromide-containing water. CeO2/RGO significantly inhibits bromate formation compared to RGO during ozonation. CeO2/RGO shows an enhancement on DEET degradation efficiency during ozonation. Ozone (O3) is widely used in drinking water disinfection and wastewater treatment. However, when applied to bromide-containing water, ozone induces the formation of bromate, which is carcinogenic. Our previous study found that graphene oxide (GO) can enhance the degradation efficiency of micropollutants during ozonation. However, in this study, GO was found to promote bromate formation during ozonation of bromide-containing waters, with bromate yields from the O3/GO process more than twice those obtained using ozone alone. The promoted bromate formation was attributed to increased hydroxyl radical production, as confirmed by the significant reduction (almost 75%) in bromate yield after adding t-butanol (TBA). Cerium oxide (less than 5 mg/L) supported on reduced GO (xCeO2/RGO) significantly inhibited bromate formation during ozonation compared with reduced GO alone, and the optimal Ce atomic percentage (x) was determined to be 0.36%, achieving an inhibition rate of approximately 73%. Fourier transform infrared (FT-IR) spectra indicated the transformation of GO into RGO after hydrothermal treatment, and transmission electron microscope (TEM) results showed that CeO2 nanoparticles were well dispersed on the RGO surface. The X-ray photoelectron spectroscopy (XPS) spectra results demonstrated that the Ce3+/Ce4+ ratio in xCeO2/RGO was almost 3‒4 times higher than that in pure CeO2, which might be attributed to the charge transfer effect from GO to CeO2. Furthermore, Ce3+ on the xCeO2/RGO surface could quench Br⋅ and BrO⋅ to further inhibit bromate formation. Meanwhile, 0.36CeO2/RGO could also enhance the degradation efficiency of N,N-diethyl-m-toluamide (DEET) in synthetic and reclaimed water during ozonation.  相似文献   

14.
This research utilized the Ames test to determine the mutagenicity of water treated by advanced processes, including ozonation and granular activated carbon (GAC). Raw water samples for this research included those obtained from the Pan Hsin waterworks as well as samples containing humic acids. Treated samples were collected from the pilot‐scale advanced treatment plant. The Ames test was used to measure the mutagenicity of the water after each treatment process. For the Pan Hsin raw water samples treated with ozone or GAC, it was indicated that, regardless of whether samples were preozonated or not, they all showed a mutagenic potency less than 2 once the S9 enzyme was added. This level of mutagenicity is insignificant. The prepared humic acid samples, on the other hand, demonstrated a significant reduction in mutagenicity after the pre‐ozonation process, indicating that preozonation can lower the degree of mutagenicity. Furthermore, the mutagenicity of the prepared humic acid samples gradually decreased after the advanced treatment process. However, when chlorine was added later to these samples, the mutagenicity increased again. This research shows that the use of O3/GAC processes to treat water can successfully lower mutagenicity, indicating a great potential for applications in the treatment of drinking water.  相似文献   

15.
The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated. A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model. With an initial concentration of 11.0 mg/L, the removal efficiencies of BPA (bisphenol A) could be measured up to 70%, 82%, and 90% when the dosages of ozone were 1, 1.5, and 2 mg/L, respectively. The impacts on BPA degradation under the conditions of different ozone dosages, water background values, BPA initial concentrations, and ozone adding time were analyzed. The results showed that ozone dosage plays a dominant role during the process of BPA degradation, while the impact of the contact time could be ignored. UV wavelength scanning was used to confirm that the by-products were produced, which could be absorbed at UV254. The value of UV254 was observed to have changed during the ozonation process. Based on the change of UV254, it could be concluded that BPA is not completely degraded at low ozone dosage, while shorter adding time of total ozone dosage, high ozone dosage, and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation. The effects of applied H2O2 dose in ozone oxidation of BPA were also examined in this study. The O3-H2O2 processes proved to have similar effects on the degradation of BPA by ozone oxidation.  相似文献   

16.
The reaction mechanism and pathway of the ozonation of 2,4,6-trichlorophenol (2,4,6-TCP) in aqueous solution were investigated. The removal efficiency and the variation of H2O2, Cl? formic acid, and oxalic acid were studied during the semi-batch ozonation experiments (continuous for ozone gas supply, fixed volume of water sample). The results showed that when there was no scavenger, the removal efficiency of 0.1 mmol/L 2,4,6-TCP could reach 99% within 6 min by adding 24 mg/L ozone. The reaction of molecular ozone with 2,4,6-TCP resulted in the formation of H2O2. The maximal concentration of H2O2 detected during the ozonation could reach 22.5% of the original concentration of 2,4,6-TCP. The reaction of ozone with H2O2 resulted in the generation of a lot of OH? radicals. Therefore, 2,4,6-TCP was degraded to formic acid and oxalic acid by ozone and OH? radicals together. With the inhibition of OH? radicals, ozone molecule firstly degraded 2,4,6-TCP to form chlorinated quinone, which was subsequently oxidized to formic acid and oxalic acid. Two reaction pathways of the degradation of 2,4,6-TCP by ozone and O3/OH? were proposed in this study.  相似文献   

17.
The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.  相似文献   

18.
The performance of an integrated process including coagulation, ozonation, ceramic ultrafiltration (UF) and biologic activated carbon (BAC) filtration was investigated for the removal of organic matter and disinfection by-products (DBPs) precursors from micro-polluted surface water. A pilot scale plant with the capacity of 120 m3 per day was set up and operated for the treatment of drinking water. Ceramic membranes were used with the filtration area of 50 m2 and a pore size of 60 nm. Dissolved organic matter was divided into five fractions including hydrophobic acid (HoA), base (HoB) and neutral (HoN), weakly hydrophobic acid (WHoA) and hydrophilic matter (HiM) by DAX-8 and XAD-4 resins. The experiment results showed that the removal of organic matter was significantly improved with ozonation in advance. In sum, the integrated process removed 73% of dissolved organic carbon (DOC), 87% of UV254, 77% of trihalomethane (THMs) precursors, 76% of haloacetic acid (HAAs) precursors, 83%of trichloracetic aldehyde (CH) precursor, 77% of dichloroacetonitrile (DCAN) precursor, 51% of trichloroacetonitrile (TCAN) precursor, 96% of 1,1,1-trichloroacetone (TCP) precursor and 63% of trichloronitromethane (TCNM) precursor. Hydrophobic organic matter was converted into hydrophilic organic matter during ozonation/UF, while the organic matter with molecular weight of 1000–3000 Da was remarkably decreased and converted into lower molecular weight organic matter ranged from 200–500 Da. DOC had a close linear relationship with the formation potential of DBPs.  相似文献   

19.
This study conducted in monitoring respirometer oxygen consumption of aerobic microorganism during biodegradation processes of ozonated organic matters, which can estimate both biodegraded efficiency and coefficient of natural organic matters (NOMs) in water source. It can be proposed that different ozone dosage might change biodegradation characteristics of organic matters. The result reveals that higher ozone dosage may cause higher biomass yield coefficient of microorganism, and cultured microorganism may easily utilize biodegradation organic matters (BOMs) produced by ozonation, finally increasing overall removal efficiency. Therefore, using respirometer to evaluate the production of BOMs by ozonation before the biological treatment is effective for controling ozone dosage and enhancement of NOMs removal by biological processes.  相似文献   

20.
This article reports for the first time that fullerene (nC60) can form chlorinated disinfection by-products in aqueous systems at ambient temperature. The ability of nC60 to form colloidal suspensions in aqueous media increases the chance that these particles will migrate in the environment and then in drinking water supply systems. Since nC60 is not completely removed by conventional water treatment, any residual nC60 is likely to be oxidized during disinfection process. While the ozonation of nC60 has been studied, little is known about the reaction between nC60 and chlorine. To address this issue, we subjected aqueous nC60 suspensions to chlorination and sequential ozonation/chlorination at ozone dosages of 4.5, 10, 15 and 24 mg O3/mg nC60. The morphology and physicochemical properties of oxidized nC60 aggregates were evaluated by scanning electron microscopy, transmission electron microscopy, UV–visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). We found that while the particles in the as-prepared nC60 were predominantly spheres, the ozonation of nC60 resulted in the formation of irregularly shaped aggregates. The concentration of atomic carbon found by XPS in the nC60 samples decreased from 92 % for the as-prepared nC60 to 50 % for the aggregates ozonated at 24 mg O3/mg nC60 and then chlorinated at 68 mg Cl2/L and allowed to react for 100 min. The presence of Cl atoms covalently bonded to C atoms was confirmed by XPS peaks corresponding to a binding energy (E b) of 200.1–202.4 eV. This demonstrates the need to better assess and monitor the formation of potentially toxic chlorinated disinfection by-products from carbon nanomaterials during water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号