首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Because detrimental effects of exposure to lead (Pb) on human health have been observed, we previously investigated concentrations of Pb in water supplies and blood of adult residents of Riyadh, Saudi Arabia. The objectives of the present study were to: (1) examine seasonal rates of deposition of Pb in dust in several areas of Riyadh city, (2) measure concentrations of Pb in both outdoor and indoor dust, (3) compare concentrations of Pb in dust in Riyadh with those reported for other cities, and (4) quantify Pb in blood of children living in Riyadh. Mean, monthly deposition of PB in outdoor dust was 4.7 × 101 ± 3.6 tons km?2, with a mean Pb concentration of 2.4 × 102 ± 4.4 × 101 μg/g. Mean, monthly deposition of Pb in indoor dust was 2.7 ± 0.70 tons km?2, with a mean concentration of 2.9 × 101 ± 1.5 × 101 μg Pb/g. There was a significant (P < 0.01) correlation between concentrations of Pb in outdoor and indoor dust. There was no correlation between concentrations of Pb in indoor dust and that in blood of children of Riyadh, whereas there was a weakly significant (P < 0.05) correlation between concentrations of Pb in outdoor dust and that in blood of children. The mean (±SD) concentration of Pb in blood of children in Riyadh was 5.2 ± 1.7, with a range of 1.7–1.6 × 101 μg/dl. Concentrations of Pb in blood of 17.8 % of children in Riyadh were greater than 10 μg/dl, which is the CDC’s level of concern.  相似文献   

2.
Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4–75.1 %) for N and 76.3 % (62.0–98.4 %) for P. The CWs retained about 1,278 kg N ha?1 year?1 and 121 kg P ha?1 year?1. There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt “zero-drainage” water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha?1 year?1 and 5.4 kg P ha?1 year?1. The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year?1 and 151 kg P year?1, which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.  相似文献   

3.
In vivo observations in laboratory mesocosms and aquaria, accompanied with in situ photographic surveys, have shown that the burrowing shrimp Calocaris templemani has a significant impact on bottom sediment dynamics and geochemistry in the St. Lawrence Estuary. This burrowing shrimp establishes and maintains complex semi-permanent burrows made up of several interconnected, ‘U-shaped’ galleries with generally four or more openings to the sediment surface. In the Estuary, at 345 m depth, Calocaris average density was estimated at 3.4 individuals m?2. Observed individual burrows reached a maximum volume of 0.54 L. C. templemani displaces this volume of mostly anoxic sediments from the subsurface layers (down to 15 cm) to the sediment surface, thereby obscuring some of the natural stratification patterns. With an estimated turnover rate of about 8 L m?2 year?1 of sediment, our calculations suggest that over a period of about 18.75 years, all the sediment to a depth of 15 cm will have been reworked by C. templemani alone.  相似文献   

4.
Rates and direction of movement in the sand dollar Peronella lesueuri were measured in summer and winter in Cockburn Sound, a large coastal embayment in south-western Australia. P. lesueuri was found to have a diurnal activity pattern throughout the year and had a greater movement rate in the summer (mean of 5.3 cm h?1, day; 3.9 cm h?1, night) than in the winter (mean of 2.7 cm h?1, day; 2.0 cm h?1, night). Seasonal change in temperature and physiological requirements by the sand dollar are the most likely reason for the seasonal differences. Reasons for diurnal variation were not clear. Direction of movement was found to be random at both times of the year. Based on these movement rates, one sand dollar can bioturbate an approximate area of 0.1 m2 day?1 and 36.4 m2 year?1. At a conservative density estimate of 0.5 sand dollars per m2 it takes approximately 20 days for the sand dollars to rework the entire area of the sediments in the habitats they occupy.  相似文献   

5.
The effects of an arbuscular mycorrhizal fungi (AMF) association on the growth, survival capabilities, nutrients and lead (Pb) uptake of Miscanthus sacchariflorus under different Pb concentrations were studied in the form of pot cultures. The treatments comprised inoculation or non-inoculation of the AMF, Gigaspora margarita, and the addition of three Pb concentrations to the soil (0, 100 and 1000?mg?kg?1). The addition of Pb significantly decreased mycorrhizal colonisation. The inoculation of AMF with Pb increased chlorophyll content, Fv/Fm, total dry mass, indole-3-acetic acid (IAA), total nitrogen, and total phosphorus, whereas H2O2 level, indole-3-acetic acid oxidase (IAAO) activity, and peroxidase (POD) activity were low compared to those in the non-inoculated treatments. Moreover, the application of AMF together with Pb doses induces concentrations of Pb in the plant, where the higher dose of Pb (1000?mg?kg?1) induces a lower content of Pb in the aerial part of the plant but a higher content in the root. G. margarita enhanced the tolerance of M. sacchariflorus against Pb toxicity, and facilitated the accumulation of Pb in the plant roots, whereas translocation to the shoots was inhibited at the highest dose Pb (1000?mg?kg?1). However, in contaminated soil, the Pb removal capability of M. sacchariflorus with AMF was remarkable.  相似文献   

6.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

7.
New estimates of production of sub-ice and ice microalgae in the shelf seas of the Canadian Arctic and in the Canada Basin of the Arctic Ocean derived from reduction of nitrates in the water column, as recorded in time series available in publicly held data bases, suggest that it is of greater magnitude (up to 30 g C m?2 year?1) and represent a higher proportion (up to 50 % on the shelf and 90 % in the Canada Basin) of net community production than previously estimated for both areas.  相似文献   

8.
Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO3) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0–5% powdered eggshell waste and curing the soil (1,246 mg Pb kg?1 soil and 17 mg Cd kg?1 soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl2), 1 M CaCl2, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH3COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO3 and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO3 and eggshell waste, regardless of extractant. Using CaCl2 extraction, the lowest Cd concentration was achieved upon both CaCO3 and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH3COOH or EDTA in soils treated with CaCO3 and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO3 for the immobilization of heavy metals in soils.  相似文献   

9.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

10.
The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 12.5, 25, and 50 ton ha?1 year?1 and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001–2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg?1 for Cu and 300 mg kg?1 for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg?1 to 108.2 and 214.3 mg kg?1, respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage.  相似文献   

11.
In order to examine the role of position in the tidal range on biomass production and nutrient pools in Spartina alterniflora in an Argentinian estuary, we estimated productivity, the concentration of C, N and P in tissues and pools (concentration×biomass) of these elements in low (LM) and high (HM) zones. Aboveground biomass of S. alterniflora was higher in HM than in LM. Aboveground primary productivity was 106 and 439 g dry wt m?2 year?1 in LM and HM, respectively. Belowground biomass was similar in LM and HM. Belowground primary productivity was 526 and 744 g dry wt m?2 year?1 for LM and HM, respectively. Nutrient pools were higher in HM than in LM. Biomass and productivity values were low, which makes nutrient pools low. The lower values of the parameters analysed in LM than in HM indicate that position in the tidal range is an important factor in this system, possibly due to the effect of flooding. Moreover, this pattern is opposite to the general one observed in the northern hemisphere, meaning that studying marshes from different environments is worth doing. Because pools were higher in HM, this zone would be more important for nutrient input to the estuary.  相似文献   

12.
The atmospheric particulates from the Caracus Valley in Venezuela and the fluvial particulates transported by the Tuy River into the Caribbean sea have been evaluated for Pb, Cu and Zn with the purpose of determining the contamination levels in the study area. The atmospheric particulate samples were collected in the city of Caracas using a low volume sampler whereas the fluvial particulate were collected at the mouth of the Tuy River. The particulate samples were analysed by flame or graphite furnace atomic absorption spectrometry depending upon the concentration levels of the heavy metal under study. The results obtained for the fluvial particulates enabled estimates to be made of the total anthropogenic flux of Cu (383 ton year–1), Pb (528 ton year–1) and Zn (865 ton year–1). These results yield annual per capita inputs for Cu (96 g),Pb (132 g) and Zn (216 g) which greatly exceed those from global anthropogenic emissions. The weighted average concentration of Pb (1.13 %) found in the atmospheric particulates was much higher than those for Cu (140 mg kg–1) and Zn (200 mg kg–1) and reflects the high motor car traffic in the Caracas Valley. The anthropogenic/natural ratios estimated in this study were as follows: 2.6 for Pb; 1.5 for Cu and 1.5 for Zn. This indicates that anthropogenic inputs for Cu, Pb, and Zn in the study area exceed those from natural sources, cars being the major source for Pb and industrial activities the major sources for Cu and Zn.  相似文献   

13.
Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10?7 to 1.2 × 10?5 (year?1) for total PBDEs and from 2.9 × 10?7 to 7.2 × 10?6 (year?1) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10–3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities and the high degree of human exposure and suggest the need for continuous investigations on environmental pollution and toxic impacts of e-waste-related hazardous chemicals.  相似文献   

14.
Changes in the principal sources of Pb in overbank sediment profiles have been documented for two Spanish areas by using Pb isotopes and Pb concentrations. These locations (Madrid and Tinto–Odiel basin) represent two of the most contaminated regions in Spain. The Community of Madrid is characterized by heavy industrial and urban activity, focused mainly in Madrid City. The Tinto–Odiel basin drains the Iberian Pyrite Belt, which hosts many polymetallic massive sulphides and is heavily affected by mining activities in their headwaters. It has been proven that the influence of anthropogenic activity is reflected in these overbank deposits by variations in Pb concentrations that, in general, correlate with shifts in the 206Pb/207Pb ratio. Rivas profile (downstream of Madrid) was found to be the most anthropogenically influenced site. The sediments within this profile which were recently deposited (170 ± 40 years BP) have the least radiogenic signatures. 206Pb/207Pb ratios ranged between 1.1763 and 1.1876 indicating significant contributions of anthropogenic Pb. In contrast, profiles upstream of Madrid possess an average 206Pb/207Pb ratio of 1.2272. It is difficult to clearly identify the most prominent source as the sediments appear to be characterized by an input from several sources. The floodplain profiles in the Tinto–Odiel basin exhibit uniform 206Pb/207Pb ratios ranging from 1.1627 (Odiel river) to 1.1665 (Tinto river). These ratios are similar to the ones possessed by sulphide ores in the area and differ from the ratios of other nonmineralized formations in the basin, indicating that mining activities are the primary, if not sole, source of Pb to the sediments.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) concentrations were analysed in the organic film on the glass surfaces of different functional areas in central Shanghai. Concentration levels of total PAHs in the organic film ranged from 1,348.5 to 4,007.9 ng m?2. The concentration of PAHs was lowest in parks and green spaces (1,348.5 ng m?2) and highest in traffic zones (4,007.9 ng m?2). A concentration gradient of total PAHs was observed as follows: traffic zones > commercial areas > cultural and educational areas > parks and green spaces. The distribution of PAHs was characterised by 3–4 ring PAHs in the study areas. The most abundant PAHs were phenanthrene (20.5 %), fluorene (16.7 %), pyrene (12.4 %) and chrysene (Chry) (11.2 %). The mass of the bulk film was composed of organic and inorganic compounds and ranged from 246 to 1,288 mg m?2. The bulk film thickness varied from 144 to 757 nm in the different functional areas. The ratios of An/178 and Fl/202 and principal component analysis suggested that PAHs came mainly from the mixed sources of fossil fuel, coal and incomplete combustion of biomass. Benzo[a]anthracene (BaA)/Chry is not suitable for use as a tracer for the transmission process of PAHs because of the rapid depletion of BaA in the organic film by photooxidation during daylight hours. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 21 to 701 ng g?1, and the major carcinogenic contributors of the 16 PAHs were BaP, DahA, B[b/k]F and InP, accounting for 83 % of BaPeq.  相似文献   

16.
Urban children remain disproportionately at risk of having higher blood lead levels than their suburban counterparts. The Westside Cooperative Organization (WESCO), located in Marion County, Indianapolis, Indiana, has a history of children with high blood lead levels as well as high soil lead (Pb) values. This study aims at determining the spatial relationship between soil Pb sources and children’s blood lead levels. Soils have been identified as a source of chronic Pb exposure to children, but the spatial scale of the source–recipient relationship is not well characterized. Neighborhood-wide analysis of soil Pb distribution along with a furnace filter technique for sampling interior Pb accumulation for selected homes (n = 7) in the WESCO community was performed. Blood lead levels for children aged 0–5 years during the period 1999–2008 were collected. The study population’s mean blood lead levels were higher than national averages across all ages, race, and gender. Non-Hispanic blacks and those individuals in the Wishard advantage program had the highest proportion of elevated blood lead levels. The results show that while there is not a direct relationship between soil Pb and children’s blood lead levels at a spatial scale of ~100 m, resuspension of locally sourced soil is occurring based on the interior Pb accumulation. County-wide, the largest predictor of elevated blood lead levels is the location within the urban core. Variation in soil Pb and blood lead levels on the community level is high and not predicted by housing stock age or income. Race is a strong predictor for blood lead levels in the WESCO community.  相似文献   

17.
The spatial distribution of mangroves in the Mngazana Estuary under sea level rise induced by climate change, together with different substrate elevation change scenarios was predicted for 2020, 2050 and 2100. The present inundation frequency tolerance range was from 0.8 to 31.2 %, equivalent to substrate elevation thresholds of 1.1 and 1.7 m amsl. These thresholds were measured by field surveys and analysis of a gauge station situated near the mouth of the estuary. The predictions were based on the assumption that the inundation frequency tolerance range of mangrove stands remains constant in the future. Through the use of a digital elevation model an initial increase of 2.10 ha year?1 was found in mangrove area between present and 2020 (from 122.6 to 143.6 ha). This was due to habitat becoming available that is currently too compacted for seedling establishment to occur. This compaction resulted from human and cattle traffic for grazing. Thereafter there would be a mean loss of 0.66 ha year?1 from 2020 through 2100. Landward migration of mangroves would not take place due to the elevation limit of adjacent non-mangrove areas. In addition, the loss rate would increase to 1.01 ha year?1 under insufficient sediment accretion, but would decrease to 0.18 ha year?1 under thriving mangroves condition. The analysis of sea storm event in September 2008 showed that local water level increased by 28 cm and maximum affected area was 87.0 ha (about 71 % of mangrove stands). The inundation continued over 5 days. The results indicated that the combination impact of sea level rise, substrate elevation change and sea storm would possibly be a threat to tropical African estuaries with large flat intertidal areas and mangroves.  相似文献   

18.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

19.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

20.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号