首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

2.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

3.
Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg?1) than the El Lirio (up to 26 μg N kg?1). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg?1. We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.  相似文献   

4.
Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pHKCl 3.20–3.26; Cd 7.1 mg kg?1, Cu 120 mg kg?1, Pb 2154 mg kg?1 and Zn 605 mg kg?1) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO3), and supplementing with 40 mg kg?1nitrogen (NH4NO3) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO3 (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH2PO4 (treatment 5). Treatments 1–5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the ‘plant available’ fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or ‘plant available’ fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 μg g?1) or roots (3.11 μg g?1), while treatment 5 resulted in the highest Cd concentration (2.13 μg g?1) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 μg g?1) was most effectively inhibited by combined treatment, while the highest value (136 μg g?1) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 μg g?1) in shoots than other amendments, where these values were around 100 μg g?1. All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.  相似文献   

5.
6.
Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg?1 of Pb and 810.3 mg kg?1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg?1 of Pb and 525.4 mg kg?1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulted from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.  相似文献   

7.
Surface and subsurface soil samples contaminated with crude oils were collected from an impacted site at Bodo City in the Niger Delta, Nigeria, after a field reconnaissance survey. An uncontaminated soil sample collected 100 m from the impacted site, but within the same geographical area, was used as a control. Trace elements such as, As, Cu, Cr, Cd, Fe, Pb, Ba, Ni, V, Hg and cation-exchange capacity constituents of the contaminated and uncontaminated soils were determined by atomic absorption spectroscopy. Trace element concentrations were: Cu, 0.5–13.4 mg kg? 1; Cr, 0.2–0.8 mg kg? 1; Fe, 6.2–8.7 mg kg? 1; Ba 80.0–108.0 mg kg? 1; Ni, 0.6–4.8 mg kg? 1; and V, 4.0–9.4 mg kg? 1; cation-exchange capacity ranged from 43.6 to 57.2 mg kg? 1 in surface and subsurface soils. Results showed that eigenvalues for the two first principal components represent up to 49% of the total variance. A positive correlation of the first principal component with Cu, Cr and cation-exchange capacity shows pollution from oil spillage, while a positive correlation of the second principal component with Cr, Fe, V, and dissolved oxygen (DO) shows both oil pollution and allochthonous inputs.  相似文献   

8.
To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg?1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg?1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg?1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.  相似文献   

9.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

10.
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg?1), Pb (940 to >5000 mg kg?1) and Zn (2370–11,300 mg kg?1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L?1), Pb (2.11–326 µg L?1) and Zn (280–2900 µg L?1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.  相似文献   

11.
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg?1) compared with the coarse fraction (1210–22,000 mg kg?1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.  相似文献   

12.
Metal contents of waste mobile phones represent a major environmental risk, especially considering the adoption of inappropriate management options in developing countries including open burning and disposal into surface water bodies. In this study the metal contents of mobile phone printed wiring board (PWB) samples were assessed. Sixty-two waste mobile phones of 15 brands were collected, dismantled, and their PWB samples were analyzed for Cu, Pb, Ag and Cd. The metal concentrations in the samples varied widely between and within brands. Among these metals, Cu and Pb were found to be at very high concentrations. The range (mean?±?SD) of Cu and Pb concentrations were 94.1–532?g?kg?1 (250?±?92.3?g?kg?1) and 7.0–46.2?g?kg?1 (20.1?±?8.4?g?kg?1), respectively. All Cu and Pb concentrations exceeded toxicity threshold limit concentration (TTLC) regulatory limits used in characterizing wastes as hazardous in the state of California, USA. The mean Cu and Pb concentrations exceeded the corresponding TTLC limits by factors of 100 and 20, respectively. The Ag and Cd concentrations were in the range 59.4–759?mg?kg?1 (mean 227?±?104?mg?kg?1) and ND – 15.6?mg?kg?1 (2.1?±?3.3?mg?kg?1), respectively.  相似文献   

13.
Levels of Pb, Ni, Cr, Cu, Zn, and Cd in the glass screens (GS) and printed wiring boards (PWBs) of obsolete computer monitors (OCMs) were determined by flame atomic absorption spectrophotometry (FAAS) following standard digestion. Metal concentrations (mg kg?1) in GS were in the following ranges (medians in brackets): Pb ND – 3100 (46), Cd 0.5–2.6 (0.8), Cr ND – 18.7 (3.1), and Zn 8.1–600 (37) and in PWBs (mg kg?1): Pb 34,600 ± 17,000, Cd 11 ± 9, Cr 59 ± 45, Zn 15,900 ± 7800, Cu79,000 ± 22,600, and Ni 3200 ± 2500. In GS, the levels of the six metals were lower than their total threshold limit concentrations (TTLC), except for Pb with a TTLC of 1000 mg kg?1 in 10% of the samples. In the PWBs, the TTLC of Pb and Cu (2500 mg kg?1) was exceeded many fold. For Zn (5000 mg kg?1) and Ni (2000 mg kg?1); they were exceeded by 90% and 65%, respectively. For OCMs manufactured in 2001 and later, Pb and Zn levels in GS and Cr, Zn, and Ni in PWBs were significantly reduced.  相似文献   

14.
The overall effect of the number of boats on the copper (Cu) levels in the water column and sediment, along with their spatial variability within Shelter Island Yacht Basin (SIYB), San Diego Bay, California was examined. We identified a horizontal gradient of increasing dissolved Cu and Cu in sediment from outside to the head of SIYB which was coincident with the increasing number of boats. Spatial models of Cu distribution in water and sediment indicated the presence of ‘hotspots’ of Cu concentration. From outside to the head of SIYB, dissolved Cu ranged from 1.3 μ g L?1 to 14.6 μ g L?1 in surface water, and 2.0 μ g L?1 to 10.2 μ g L?1 in bottom water. Cu in sediment exceeded the Effect Range Low of 34 mg kg?1 (i.e. where adverse effects to fauna may occur), with a peak concentration of 442 mg kg?1 at the head of the basin. Free Cu++ in surface water was several orders of magnitude higher than in sediment porewater. High-resolution data of Cu species together with probability maps presented in this paper will allow managers to easily visualise and localise areas of impaired quality and to prioritise which areas should be targeted to improve Cu-related conditions.  相似文献   

15.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

16.
When the hazard quotient for ingestion (HQI) of a trace element in soil and dust particles is adjusted for the element’s bioaccessibility, the HQI is typically reduced as compared to its calculation using pseudo-total element concentration. However, those studies have mostly used bulk particles (<2 mm or <250 µm), and the reduction in HQI when expressed as bioaccessible metal may not be similar among particle size fractions, the possibility probed by the present study of street dusts and soils collected in Tehran. The highest Cu, Pb and Zn near-total concentrations occurred in the finest particles of dusts and soils. Bioaccessible concentrations of Cu, Pb and Zn in the particles (mg kg?1) were obtained using simple bioaccessibility extraction test (SBET). The bioaccessibility (%) did not vary much among near-total concentrations. In the bulk (<250 µm) sample, the bioaccessible concentration of Cu and Pb increased as the pH of sample increased, while Zn bioaccessibility (%) in the bulk particles was influenced by organic matter and cation exchange capacity. X-ray diffraction identified sulfide and sulfate minerals in all of the size-fractionated particles, which are insoluble to slightly soluble in acidic conditions and included most of the Cu and Pb in the samples. The only Zn-bearing mineral identified was hemimorphite, which would be highly soluble in the SBET conditions. The calculated HQI suggested potential non-carcinogenic health risk to children and adults from ingestions of soils and dusts regardless of particle size consideration, in the order of Zn > Pb ≥ Cu. The HQI calculated from near-total metal was not much different for particle size classes relative to bulk particles; however, the bioaccessibility percent-adjusted HQI for Pb was higher for the smaller particles than the bulk. This work is novel in its approach to compare HQI for a bulk sample of particles with its composite particle size fractions.  相似文献   

17.
Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg?1, with mean As concentration 64.44 mg kg?1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27–385.98 mg kg?1 dry weight), while the lowest was in unpolished rice (0.31–0.52 mg kg?1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root ? soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg?1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.  相似文献   

18.
Food is the major source of metal exposure for the nonsmoking general population. Food samples of plant and animal origin from Ismailia, Egypt, were analyzed for the content of cadmium (Cd), lead (Pb), chromium (Cr), zinc (Zn), and copper (Cu) using AAS. The Cr, Zn, and Cu concentrations were in the range of 1.7–249?µg?kg?1 wet weight (ww), 2–66?mg?kg?1?ww, and 0.5–3.46?mg?kg?1?ww, respectively. The mean daily intake of Cr, Zn, and Cu was 28.9?µg day?1, 8.55?mg day?1, and 1.7?mg day?1, respectively. The intake estimates are within the range of the recommended intake established internationally. Concentrations of Cd and Pb were in the range of 10–321?µg?kg?1?ww and 31–1200?µg?kg?1?ww, respectively. The weekly dietary intake for Cd and Pb (4.02 and 20.4?µg?kg?1 b.w, respectively) is lower than the FAO/WHO PTWI. Bread is the foodstuff that provided the highest rate of Pb and Cd (62 and 46% of the daily intake) to adults in Ismailia city.  相似文献   

19.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

20.
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil–plant–atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg?1): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China’s Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60–79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号