首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect societies are sometimes exploited by workers who reproduce selfishly rather than help to rear the queens offspring. This causes a conflict-of-interest with the mother queen and, frequently, with the non-reproductive workers as well. One mechanism that can reduce conflict is policing, whereby either the queen or other workers aggress egg-laying workers or destroy worker-laid eggs. Here we present the first direct observations of queen and worker policing in natural, unmanipulated colonies of a social insect, the tree wasp Dolichovespula sylvestris. Worker reproduction was common, with workers producing 50% of all male eggs. However, most worker-laid eggs, 91%, were policed within 1 day, whereas most queen-laid eggs, 96%, remained unharmed. The workers were responsible for 51% of all policing events and the queen for 49%. The workers and mother queen also commonly aggressed ovipositing workers, and successfully prevented them from depositing eggs in 14% and 6% of all attempted ovipositions. Hence, both queen policing and worker policing occur and policing acts via two distinct mechanisms: selective destruction of worker-laid eggs and aggression of ovipositing workers. At a general level, our study shows that both centralized and decentralized control can act together to suppress conflict within social groups.Communicated by R. Page  相似文献   

2.
In social insects, conflicts over male parentage can be resolved by worker policing. However, the evolution of policing behavior is constrained by the ability of individuals to identify reproductive nestmates, or their eggs. We investigated the occurrence of worker policing and its underlying chemical communication in the bulldog ant Myrmecia gulosa. Although workers have functional ovaries and can lay male-destined eggs, they do not reproduce in queenright colonies. To determine if their sterility is a consequence of worker policing, we experimentally induced worker reproduction in the presence of a queen. Some individuals were seized and immobilized by nestmates, and sometimes killed as a consequence. Although the ovarian development of immobilized individuals was variable, their cuticular hydrocarbon profiles were intermediate between reproductive and nonreproductive workers, indicating they were in the process of starting to reproduce. Approximately 29% of these incipient reproductive workers were successfully policed. To test for policing on eggs, we transferred viable worker eggs to queenright colonies and monitored their acceptance. Furthermore, we compared the surface hydrocarbons of the different types of eggs to determine whether these chemicals could be involved in egg recognition. We found that although there were differences in hydrocarbon profiles and discrimination between queen and worker-laid eggs, viable eggs were not destroyed. Our results strongly support the idea that cuticular hydrocarbons are involved in the policing of reproductive workers. A low level of worker policing appears sufficient to select for self-restraint in workers when few fitness benefits are gained by selfish reproduction. Policing of eggs may thus be unnecessary.  相似文献   

3.
Worker-reproduction is rare in queenright honey-bee colonies. When workers do lay eggs, their eggs are normally eaten by other workers presumably because they lack the queen's egg-marking signal. Workers use the absence of this queen signal to enforce the queen's reproductive monopoly by policing any worker-laid eggs. In contrast, in anarchistic colonies, the majority of the males arise from worker-laid eggs. Anarchistic worker-laid eggs escape policing because workers perceive anarchistic eggs as queen-laid. However, in this study, we show that eggs laid by queenless anarchistic workers do not escape policing and have very similar removal rates to worker-laid eggs from queenless wild-type (i.e. non-anarchistic) colonies. This suggests that, under queenless conditions, eggs laid by anarchistic workers lose their chemical protection and are therefore no longer perceived as queen-laid. Hence, the egg-marking signal seems to be only applied to eggs when queen and brood are present. This suggests that in the absence of queen and brood, the biosynthetic pathway that produces the egg-marking signal is switched off.Communicated by L. Keller  相似文献   

4.
Animal societies, including those of humans, are under constant threat by selfish individuals, who attempt to enforce their own interests at the cost of the group. In the societies of bees, wasps, and ants, such individual selfishness can be prevented by “policing,” whereby workers or queens impede the reproduction of other individuals by aggression, immobilization, or egg eating. In this study, we report on a particular kind of reproduction control in the ant Temnothorax unifasciatus, which can be considered as a selfish act itself. We experimentally induced workers to lay eggs by dividing several colonies into two halves, one with and one without a queen. In queenless colonies, workers established rank orders by aggression and several top-ranking workers started to reproduce. Upon reunification, egg-laying workers mostly stopped behaving aggressively. They were neither attacked by the queen nor by random workers, but instead received infrequent, nondestructive, targeted aggression from a few workers, most of which became fertile when the queen was later removed. The introduction of differentially stained worker-laid and queen-laid eggs in queenright fragments did not lead to a selective removal of worker-laid eggs. Hence, there appears to be no collective worker policing in T. unifasciatus. Instead, reproduction appears to be controlled mostly through a few attacks from high-ranking workers, which, in this way, might attempt to selfishly increase their chances of future reproduction.  相似文献   

5.
Policing behavior that prevents workers from laying male eggs was examined in the monogynous and monandrous ponerine ant Diacamma sp. from Japan, in which a singly mated worker called a “gamergate” reproduces as the functional queen in each colony. Since oviposition by virgin workers is rare in the presence of a gamergate, we separated a portion of workers from the gamergates and induced their oviposition experimentally. When orphaned workers had started to oviposit, they were returned to the original colonies, where they continued to lay eggs for a while. The gamergates and other workers interfered with the laying workers by aggressively taking and finally eating the eggs. In total, 60% and 29% of the worker-derived eggs were eaten by gamergates and non-mother workers, respectively. The observed worker-worker interactions were not driven simply by competition to leave own sons, because non-laying non-orphaned workers interfered with worker reproduction. Furthermore, orphaned workers were usually attacked by non-orphaned workers soon after colony reunification. These results indicate that both queen policing by gamergates and worker policing in this species are mechanisms inhibiting worker oviposition. The gamergate contribution to policing was proportionately larger than that of workers, but among virgin workers, the relationship between dominance rank and contribution to policing was not clear. But about 11% of the eggs were not policed and were added to egg piles, especially in large colonies. Worker policing in a monandrous and monogynous eusocial Hymenoptera contrasts to other recent findings, and possible genetic, social, and ecological factors for its evolution in Diacamma sp. are discussed. Received: 16 November 1998 / Received in revised form: 9 February 1999 / Accepted: 21 February 1999  相似文献   

6.
In anarchistic honey-bee colonies, many workers’ sons are reared despite the presence of the queen. Worker-laid eggs are normally eaten by other workers in queenright colonies. Workers are thought to discriminate between queen-laid and worker-laid eggs by the presence or absence of a queen-produced egg-marking pheromone. This study compared the survival of three classes of eggs (worker-laid eggs from anarchistic colonies, worker-laid eggs from non-anarchistic queenless colonies, and queen-laid eggs) in both queenright normal colonies and queenright anarchistic colonies, in order to test the hypothesis that anarchistic workers evade policing by laying more acceptable eggs. As expected, few worker-laid eggs from non-anarchistic colonies survived more than 2 h. In contrast, worker-laid eggs from anarchistic colonies had much greater acceptability, which in some trials equalled the acceptability of queen-laid eggs. Anarchistic colonies were generally less discriminatory than normal queenright colonies towards worker-laid eggs, whether these originated from anarchistic colonies or normal queenless colonies. This indicates that the egg-removal aspect of the anarchistic syndrome involves both worker laying of eggs with greater acceptability and reduced discriminatory behaviour of policing workers. Received: 19 July 1999 / Received in revised form: 3 November 1999 / Accepted: 20 November 1999  相似文献   

7.
Informational constraints can be an important limitation on the accuracy of recognition. One potential constraint is the use of recognition information from the same sources in multiple discriminatory contexts. Worker wood ants, Formica fusca, discriminate eggs based on their maternal sources of origin in two main contexts: recognition of eggs laid by nestmate versus non-nestmate queens and recognition of worker-laid versus queen-laid eggs. We manipulated the experience of F. fusca workers in laboratory colonies to both worker-laid and queen-laid eggs by transferring eggs between colonies in order to investigate whether these two contexts of egg discrimination are independent. Experience of non-nestmate queen-laid eggs significantly increased worker acceptance of both familiar (18% accepted) and unfamiliar (10%) queen-laid eggs compared to control workers without experience of eggs other than those laid by their own colony’s queen (2%). In contrast, worker acceptance of worker-laid eggs was not affected by variation in the egg experience of workers (14% in workers from control colonies exposed only to eggs from their own colony’s queen versus 19% and 17% in workers from colonies which had received eggs laid by either a non-nestmate queen or nestmate workers, respectively). Our results suggest that these two recognition contexts do not strongly constrain each other and are different in their ontogeny. In particular, worker-laid eggs are universally discriminated against by workers from colonies with a queen whatever the egg experience of the workers, while non-nestmate queen-laid eggs are strongly discriminated against only by workers without experience of eggs laid by more than one queen.  相似文献   

8.
Summary The study investigates whether worker policing via the selective removal of worker-laid male eggs occurs in normal honey bee colonies with a queen. Queenright honey bee colonies were set up with the queen below a queen excluder. Frames of worker brood and drone comb were placed above the queen excluder. Daily inspections of the drone frames revealed the presence of a few eggs, presumably laid by workers, at a rate of 1 egg per 16000 drone cells. 85% of these eggs were removed within 1 day and only 2% hatched. Dissections of workers revealed that about 1 worker in 10000 had a fully developed egg in her body. These data show that worker egg-laying and worker policing are both normal, though rare, in queenright honey bee colonies, and provide further confirmation of the worker policing hypothesis.  相似文献   

9.
Apis florea is a single-combed, open-nesting, dwarf honeybee indigenous to Asia. In common with other species of this genus, A. florea is highly polyandrous, and is therefore predicted to curtail worker reproduction by mutual policing mechanisms that keep worker reproduction at an extremely low level. Policing mechanisms could involve destruction of workers' eggs or offspring, or aggression toward those workers that are reproductively active. We show that in A. florea, worker-laid eggs are eliminated approximately twice as fast as queen-laid eggs, indicating that A. florea uses oophagy of worker-laid eggs as a mechanism of worker policing. Genetic analysis of four colonies indicated that all males produced were sons of queens, not workers. Dissections of 800 workers, from four colonies, did not reveal any significant levels of ovary activation. These results suggest that worker policing is an effective component of the mechanisms that maintain worker sterility in this species. Furthermore, they suggest that worker policing via oophagy of worker-laid eggs is pleisiomorphic for the genus.  相似文献   

10.
Queen pheromones interfere with worker reproduction in social insects. However, there is still an unresolved question as to whether this pheromone acts as an “honest” signal for workers, giving a reliable indication of the queen’s reproductive value, or as a suppressive agent, inhibiting worker reproduction independent of the queen’s reproductive capacity. In honeybees (Apis mellifera), the queen’s mandibular gland secretion, a mix of fatty acids and some aromatic compounds, is crucial for regulating the reproductive division of labor in the colony inhibiting ovary development in workers. We quantified the mandibular gland secretions of virgin, drone-laying, and naturally mated queens using gas chromatography to test whether the queens’ mating, ovary activation, or the reproductive value for workers correlated with the composition of the secretion. Although the absolute amounts of the “queen substance” 9-oxo-2(E)-decenoic acid (9-ODA) were similar among the three groups, the proportions of 9-ODA decreased with increasing reproductive quality. Furthermore, the ratios of queen to worker compounds were similar in all three treatment groups, irrespective of the reproductive capacity. A multivariate analysis including all six compounds could not separate drone-laying queens from naturally mated ones, both with active ovaries but only the latter ensuring colony survival. We suggest that the mandibular gland pheromones are unlikely to function as reliable indicators of queen reproductive value and rather operate as an agent to suppress worker reproduction. This does not exclude the possibility that other “honest” pheromone signals exist in the honeybee colony, but these would have to arise from other semiochemicals, which could be produced by both the queen and the brood.  相似文献   

11.
When a honeybee (Apis spp.) colony loses its queen and is unable to rear a new one, some of the workers activate their ovaries and produce eggs. When a colony has a queen (i.e., it is queenright) almost all worker-laid eggs are eaten, but when hopelessly queenless, the workers become more tolerant of worker-laid eggs and rear some of them to adult drones. This increased tolerance renders a queenless colony vulnerable to worker reproductive parasitism, wherein unrelated workers enter the colony and lay eggs. Here, we show that the proportion of unrelated (non-natal) workers significantly decreases after an Apis mellifera colony becomes queenless. The remaining non-natal workers are as likely to have activated ovaries as natal workers, yet they produce more eggs than natal workers, resulting in significantly higher reproductive success for non-natal workers. In a second experiment, we provided queenless and queenright workers with a choice to remain in their own colony or to join a queenless or queenright colony nearby. The experiment was set up such that worker movement was unlikely to be due to simple orientation errors. Very few workers joined another colony, and there was no preference for workers to drift into or out of queenless or queenright colonies, in accordance with the proportion of non-natal workers declining significantly after becoming queenless in the first experiment.  相似文献   

12.
The role of Dufour's gland secretion as an egg discriminator pheromone was reevaluated by simultaneously exposing workers to two combs, one containing queen- or worker-laid eggs and the second containing treated or untreated worker-laid eggs. Treatments included extracts of Dufour's gland secretion as well as the synthetic esters that were identified in the secretion. Policing was clearly detected both in queenright and queenless colonies by the swift removal of worker, but not of queen eggs. However, neither the glandular secretion nor its synthetic ester constituents were able to protect worker-born eggs from policing. Treated worker eggs were removed significantly faster than queen eggs, and at the same rate as non-treated worker eggs. These results are not consistent with the hypothesis that the secretion serves as an egg-marking pheromone. Chemical analyses of the queen abdominal tips revealed the presence of Dufour's esters, indicating that the glandular secretion oozes out and spreads over the cuticle around the genital chamber. However, contamination while ovipositing may also explain the minute amounts of these esters that were detected on the egg surface. Dufour's gland caste-specific composition suggests that in queens it may constitute a signal that plays a role in queen-worker interactions. Attraction bioassays revealed that the queen secretion, but not that of workers, is very attractive to workers. When applied either on a glass slide or on another worker, a retinue formed around the "surrogate queen". We conclude that Dufour's gland secretion constitutes part of a complex queen signal that is the basis for the social integrity of the honeybee colony.  相似文献   

13.
Honeybee (Apis) workers cannot mate, but retain functional ovaries. When colonies have lost their queen, many young workers begin to activate their ovaries and lay eggs. Some of these eggs are reared, but most are not and are presumably eaten by other workers (worker policing). Here we explore some of the factors affecting the reproductive success of queenless workers of the red dwarf honeybee Apis florea. Over a 2-year period we collected 40 wild colonies and removed their queens. Only two colonies remained at their translocated site long enough to rear males to pupation while all the others absconded. Absconding usually occurred after worker policing had ceased, as evidenced by the appearance of larvae. Dissections of workers from eight colonies showed that in A. florea, 6% of workers have activated ovaries after 4 days of queenlessness, and that 33% of workers have activated ovaries after 3 weeks. Worker-laid eggs may appear in nests within 4 days and larvae soon after, but this is highly variable. As with Apis mellifera, we found evidence of unequal reproductive success among queenless workers of A. florea. In the two colonies that reared males to pupation and which we studied with microsatellites, some subfamilies had much higher proportions of workers with activated ovaries than others. The significance of absconding and internest reproductive parasitism to the alternative reproductive strategies of queenless A. florea workers is discussed.  相似文献   

14.
 Using electrophoretic markers, eggs laid by workers were identified in honey bee (Apis mellifera) colonies with a queen. Based on extrapolation, these represented about 7% of the unfertilized (male) eggs laid in the colonies. A very small proportion of workers (of the order of 0.01%) lay these eggs. Worker-laid eggs are rapidly removed, so that very few sons of workers are reared. Thus the reproductive cooperation in bee colonies is maintained by ongoing antagonistic interactions among the members of the colony, with worker laying and egg removal policing by other workers being relatively common. Received: 24 November 1995/Accepted after revision: 25 May 1996  相似文献   

15.
Policing in queenless ponerine ants   总被引:8,自引:0,他引:8  
Potential reproductive conflicts are common in insect societies. One process that can reduce or suppress conflict is policing. We review worker and "queen" policing in queenless ponerine ants. Queenless ants are an important model system for the study of intracolony reproductive conflict. Policing is widespread in queenless ants because workers are totipotent, so that additional potential conflicts occur in comparison to species where workers cannot mate, and these additional conflicts are frequently reduced by policing. Policing is more diverse than suggested by the examples known in other social insects. In almost all species of social Hymenoptera it can include preventing workers from reproducing by killing worker-laid eggs, but in queenless ants it can additionally include immobilisation or mutilation of workers attempting to reproduce by replacing the gamergate (i.e. mated worker with a queen-like role) or by becoming an extra gamergate. Policing by both workers and by the gamergate are important. Policing can be facultative. Depending on the age of the gamergate, workers can prevent her replacement by immobilising challenging workers or they can favour replacement by immobilising the gamergate. The initial definition of policing was inspired by species in which workers retain ovaries but cannot mate. We broaden the definition to include species, such as queenless ants, where females are totipotent, thereby including not only conflict over male production but also over gamergate replacement and gamergate number. Finally, we compare policing with punishment and dominance hierarchy. Policing is not always punishment and it does not necessarily entail dominance relationships.  相似文献   

16.
Social insect colonies often have one or a few queens. How these queens maintain their reproductive monopoly, when other colony members could gain by sharing in the reproduction, is not generally known. DNA microsatellite genotyping is used to determine reproductive interests of various classes of colony members in the paper wasp, Polistes annularis. The relatedness estimates show that the best outcome for most individuals is to be the reproductive egg-layer. For workers, this depends on the sex of offspring: they should prefer to lay their own male eggs, but are indifferent if the queen lays the female eggs. The next-best choice is usually to support the current queen. As a rule, subordinates and workers should prefer the current queen to reproduce over other candidates (though subordinates have no strong preference for the queen over other subordinates, and workers may prefer other workers as a source of male eggs). This result supports the theory that reproductive monopoly stems from the collective preferences of non-reproductives, who suppress each other in favor of the queen. However, we reject the general hypothesis of collective worker control in this species because its predictions about who should succeed after the death of the present queen are not upheld. The first successor is a subordinate foundress even though workers should generally prefer a worker successor. If all foundresses have died, an older worker succeeds as queen, in spite of a collective worker preference for a young worker. The results support the previous suggestion that age serves as a conventional cue serving to reduce conflict over queen succession. Received: 3 May 1996 / Accepted after revision: 22 September 1996  相似文献   

17.
In most social insects, worker sterility is reversible, and in the absence of the queen, at least some workers develop ovaries and lay male-destined eggs. In the honeybee, reproductive workers also produce queen-characteristic mandibular and Dufour’s pheromones. The evolution of worker sterility is still under debate as to whether it is caused by queen manipulation (queen-control hypothesis) or represents worker fitness maximization (worker-control hypothesis). In this study, we investigated whether worker fertility and royal pheromone production are reversible under the queen influence. To that effect, we induced ovary activation and queen pheromone production in workers by rearing them as queenless (QL) groups. These workers were subsequently reintroduced into queenright (QR) microcolonies for 1 week, and their ovary status and queen pheromone levels were monitored. Workers reintroduced into QR, but not QL colonies, showed a clear regression in ovary development and levels of the queen pheromones. This is the first demonstration that worker sterility and/or fertility is reversible and is influenced by the queen. These results also emphasize the robustness of the coupling between ovary activation and royal pheromone production, as well as lending credence to the queen-control hypothesis. The dynamics of queen pheromone production in QL workers supports the role of Dufour’s gland pheromone as a fertility signal and that of the mandibular gland pheromone in dominance hierarchies.The two authors, Osnat Malka and Shiri Shnieor, contributed equally to this work.  相似文献   

18.
Honey-bees, Apis, are an important model system for investigating the evolution and maintenance of worker sterility. The queen is the main reproductive in a colony. Workers cannot mate, but they can lay unfertilized eggs, which develop into males if reared. Worker reproduction, while common in queenless colonies, is rare in queenright colonies, despite the fact that workers are more related to their own sons than to those of the queen. Evidence that worker sterility is enforced by 'worker policing' is reviewed and worker policing is shown to be widespread in Apis. We then discuss a rare behavioural syndrome, 'anarchy', in which substantial worker production of males occurs in queenright colonies. The level of worker reproduction in these anarchic colonies is far greater than in a normal queenright honey-bee colony. Anarchy is a counterstrategy against worker policing and an example of a 'cheating' strategy invading a cooperative system.  相似文献   

19.
A honeybee queen normally mates with 10–20 drones, and reproductive conflicts may arise among a colony’s different worker patrilines, especially after a colony has lost its single queen and the workers commence egg laying. In this study, we employed microsatellite markers to study aspects of worker reproductive competition in two queenless Africanized honeybee colonies. First, we determined whether there was a bias among worker patrilines in their maternity of drones and, second, we asked whether this bias could be attributed to differences in the degree of ovary activation of workers. Third, we relate these behavioral and physiological factors to ontogenetic differences between workers with respect to ovariole number. Workers from each of three (colony A) and one (colony B) patrilineal genotypes represented less than 6% of the worker population, yet each produced at least 13% of the drones in a colony, and collectively they produced 73% of the drones. Workers representing these genotypes also had more developed follicles and a greater number of ovarioles per ovary. Across all workers, ovariole development and number were closely correlated. This suggests a strong effect of worker genotype on the development of the ovary already in the postembryonic stages and sets a precedent to adult fertility, so that “workers are not born equal”. We hypothesize a frequency-dependent or “rare patriline” advantage to queenless workers over the parentage of males and discuss the maintenance of genetic variance in the reproductive capacity of workers.Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
The mechanisms of regulating worker reproduction in bumblebees were studied by direct behavioral observations and by measuring ovarian development and juvenile hormone (JH) biosynthesis rates in workers under different social conditions. Workers in the last stage of Bombus terrestris colony development (the competition phase) had the lowest ovarian development and JH biosynthesis rates. Callows introduced into colonies immediately after queen removal (dequeened colonies) demonstrated a significant increase in ovarian development before, but not during, the competition phase. These findings differ from the higher ovarian development in colonies during the competition phase predicted by the prevailing hypothesis that worker reproduction starts in response to a decrease in queen inhibition. Reproduction of callows housed with dominant workers in small queenless groups was inhibited as in queenright colonies. This suggests that the reduced ovarian development and JH biosynthesis rates observed in dequeened and normally developing colonies during the competition phase also reflect inhibition by dominant workers. Thus, two distinct stages of inhibition of reproduction seem to exist: (1) before the competition phase, when the queen slows down worker ovarian development and prevents oviposition; (2) during the competition phase, when dominant workers inhibit ovarian development of other workers. Between these stages there seems to be a temporal “window” of enhanced worker reproductive development. The queen's typical switch to haploid egg production was not associated with changes in worker ovarian development or JH biosynthesis rates. These findings suggest that regulation of worker reproduction in B. terrestris is not determined by simple changes in the queen's inhibition capacity or by the sex of offspring and that the worker's role is more important than previously believed. Received: 18 March 1998 / Accepted after revision: 18 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号