首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lack of kin recognition in swarming honeybees ( Apis mellifera )   总被引:2,自引:0,他引:2  
Honeybee colonies reproduce by colony fission and swarming. The primary swarm leaves the nest with the mated mother queen. Further “after-swarms” can leave the nest. These are composed of virgin queens and sister workers. Since all workers in the primary swarm have the same relationship to the mother queen, kin recognition cannot have any effect on the worker distribution in the swarm. Because of polyandry of the mother queen, the after-swarm is composed of super- and halfsister workers of the virgin queen. In this case kin recognition might affect swarm composition if workers increase their inclusive fitness by preferentially investing in a supersister queen. The distribution of workers in the mother colony, the primary and the after-swarm was analyzed using single-locus DNA fingerprinting in two colonies of the honeybee (Apis mellifera). The colonies were composed of 21 and 24 worker subfamilies because of multiple mating of the queen. The subfamily distribution in the mother colonies before swarming was significantly different from the subfamily frequencies in the primary swarm. This indicates different propensities for swarming in the various subfamilies. The subfamily distribution was also significantly different between the mother colony and the after-swarm. There was however no significant difference between the subfamily composition of the primary and the after-swarm. The average effects of kin recognition on the distribution of the subfamilies in the two after-swarms were less than 2%. We conclude that colony-level selection sets the evolutionary framework for swarming behaviour. Received: 22 May 1996 / Accepted after revision: 2 November 1996  相似文献   

2.
Colonies of social insects are sometimes viewed as superorganisms. The birth, reproduction, and death of colonies can be studied with demographic measures analogous to those normally applied to individuals, but two additional questions arise. First, how do adaptive colony demographies arise from individual behaviors? Second, since these superorganisms are made up of genetically distinct individuals, do conflicts within the colony sometimes modify and upset optima for colonies? The interplay between individual and superindividual or colony interests appears to be particularly complex in neotropical, swarm-founding, epiponine wasps such as Parachartergus colobopterus. In a long-term study of this species, we censused 286 nests to study colony-level reproduction and survivorship and evaluated individual-level factors by assessing genetic relatedness and queen production. Colony survivorship followed a negative exponential curve very closely, indicating type II survivorship. This pattern is defined by constant mortality across ages and is more characteristic of birds and other vertebrates than of insects. Individual colonies are long-lived, lasting an average of 347 days, with a maximum of over 4.5 years. The low and constant levels of colony mortality arise in part from colony initiation by swarming, nesting on protected substrates, and an unusual expandable nest structure. The ability to requeen rapidly was also important; relatedness data suggest that colonies requeen on average once every 9–12 months. We studied whether colony optima with respect to the timing of reproduction could be upset by individual worker interests. In this species, colonies are normally polygynous but new queens are produced only after a colony reaches the monogynous state, a result which is in accord with the genetic interests of workers. Therefore colony worker interests might drive colonies to reproduce whenever queen number happens to cycled down to one rather than at the season that is otherwise optimal. However, we found reproduction to be heavily concentrated in the rainy season. The number of new colonies peaked in this season as did the percentages of males and queens. Relatedness among workers reached a seasonal low of 0.21–0.27, reflecting the higher numbers of laying queens. This seasonality was achieved in part by a modest degree of synchrony in the queen reduction cycle. Worker relatedness reached peaks of around 0.4 in the dry season, reflecting a decrease to a harmonic mean queen number of about 2.5. Thus, a significant number of colonies must be approaching monogyny entering the rainy season. Coupled with polygynous colonies rearing only males (split sex ratios), this makes it possible for a colony cycle driven by selfish worker interests to be consistent with concentrating colony reproduction during a favorable season.  相似文献   

3.
Multiple-queen (polygyne) colonies of the introduced fire ant Solenopsis invicta present a paradox for kin selection theory. Egg-laying queens within these societies are, on average, unrelated to one another, and the numbers of queens per colony are high, so that workers appear to raise new sexuals that are no more closely related to them than are random individuals in the population. This paradox could be resolved if workers discriminate between related and unrelated nestmate sexuals in important fitness-related contexts. This study examines the possibility of such nepotism using methods that combine the following features: (1) multiple relevant behavioral assays, (2) colonies with an unmanipulated family structure, (3) multiple genetic markers with no known phenotypic effects, and (4) a statistical technique for distinguishing between nepotism and potentially confounding phenomena. We estimated relatedness between interactants in polygyne S. invicta colonies in two situations, workers tending egg-laying queens and workers feeding maturing winged queens. In neither case did we detect a significant positive value of relatedness that would implicate nepotism. We argue that the non-nepotistic strategies displayed by these ants reflect historical selection pressures experienced by native populations, in which nestmate queens are highly related to one another. The markedly different genetic structure in native populations may favor the operation of stronger higher-level selection that effectively opposes weaker individual-level selection for nepotistic interactions within nests. Received: 28 June 1996 / Accepted after revision: 6 October 1996  相似文献   

4.
Most social groups have the potential for reproductive conflict among group members. Within insect societies, reproduction can be divided among multiple fertile individuals, leading to potential conflicts between these individuals over the parentage of sexual offspring. Colonies of the facultatively polygynous ant Myrmicatahoensis contain from one to several mated queens. In this species, female sexuals were produced almost exclusively by one queen. The parentage of male sexuals was more complex. In accordance with predictions based on worker sex-allocation preferences, male-producing colonies tended to have low levels of genetic relatedness (i.e., high queen numbers). Correspondingly, males were often reared from the eggs of two or more queens in the nest. Further, over half of the males produced appeared to be the progeny of fertile workers, not of queens. Overall investment ratios were substantially more male biased than those predicted by genetic relatedness, suggesting hidden costs associated with the production of female sexuals. These costs are likely to include local resource competition among females, most notably when these individuals are adopted by their maternal nest. Received: 3 March 1998 / Accepted after revision: 20 June 1998  相似文献   

5.
Division of reproductive labor in insect societies is often based on worker self-restraint and both queen and worker policing. Workers of many hitherto studied wasps, bees and ants do not lay eggs in the presence of a queen. However, it is presently unclear how far these observations in a few select clades can be generalized. We investigated if and how queens maintain a reproductive monopoly in colonies of the elongate twig ant, Pseudomyrmex gracilis, a member of the previously unstudied ant subfamily Pseudomyrmecinae. Colonies are usually headed by a single, singly mated queen (monogyny, monandry). Workers therefore would be more closely related to males produced by other workers (r?=?0.375) than to the sons of queens (r?=?0.25). Nevertheless, workers appear to refrain from laying male-destined eggs in the presence of the queen. In queenless conditions, workers form dominance hierarchies by antennal boxing, and only one or a few high-ranking individuals readily begin to lay eggs. When returned into a queenright colony, egg-laying workers are immediately bitten, stung and expelled or killed by other workers. While the composition of cuticular hydrocarbons clearly differed between castes, it less clearly reflected worker ovarian development. An association with worker ovarian development that would allow workers to monitor the reproductive status of nestmates could only be tentatively postulated for certain substances. Our study broadens our knowledge about reproductive conflict in social Hymenoptera and shows that worker sterility in the presence of a queen is more common in monogynous, monandrous ants than expected from relatedness alone.  相似文献   

6.
Queen control of egg fertilization in the honey bee   总被引:3,自引:0,他引:3  
The study investigated the precision with which honey bee queens can control the fertilization of the eggs they lay. Because males and workers are reared in different-sized cells, the honey bee is one of the few Hymenoptera in which it is possible for the experimenter to know which type of egg a queen “intends” to lay. Eggs were collected from both worker and drone (male) cells from four honey bee colonies. Ploidy of the embryo was determined using polymorphic DNA microsatellites. All 169 eggs taken from worker cells were heterozygous at at least one microsatellite locus showing that the egg was fertilized. All 129 eggs taken from drone cells gave a single band at the B124 locus, strongly suggesting haploidy. These data show that honey bee queens have great, and quite possibly complete, ability to control the fertilization of the eggs they lay. Data from the literature suggest that in two species of parasitoid Hymenoptera (Copidosoma floridanum, Colpoclypeus florus) females have great, but not complete, ability to control fertilization. Received: 23 December 1997 / Accepted after revision: 17 May 1998  相似文献   

7.
When cooperation is based on shared genetic interests, as in most social insect colonies, mechanisms which increase the genetic similarity of group members may help to maintain sociality. Such mechanisms can be especially important in colonies with many queens because within-colony relatedness drops quickly as queen number increases. Using microsatellite markers, we examined the Old World, multiple-queen, swarm-founding wasp Polybioides tabidus which belongs to the ropalidiine tribe, and found that relatedness among the workers was four times higher than what would be expected based on queen number alone. Relatedness was elevated by a pattern of queen production known as cyclical oligogyny, under which, queen number varies, and daughter queens are produced only after the number of old queens has reduced to one or a very few. As a result, the queens are highly related, often as full sisters, elevating relatedness among their progeny, the workers. This pattern of queen production is driven by collective worker control of the sex ratios. Workers are three times more highly related to females than to males in colonies with a single queen while they are more equally related to males and females in colonies with more queens. As a result of this difference, workers will prefer to produce new queens in colonies with a single queen and males in colonies with many queens. Cyclical oligogyny has also evolved independently in another group of swarm-founding wasps, the Neotropical epiponine wasps, suggesting that collective worker control of sex ratios is widespread in polistine wasps. Received: 22 May 2000 / Revised: 24 August 2000 / Accepted: 4 September 2000  相似文献   

8.
 Using electrophoretic markers, eggs laid by workers were identified in honey bee (Apis mellifera) colonies with a queen. Based on extrapolation, these represented about 7% of the unfertilized (male) eggs laid in the colonies. A very small proportion of workers (of the order of 0.01%) lay these eggs. Worker-laid eggs are rapidly removed, so that very few sons of workers are reared. Thus the reproductive cooperation in bee colonies is maintained by ongoing antagonistic interactions among the members of the colony, with worker laying and egg removal policing by other workers being relatively common. Received: 24 November 1995/Accepted after revision: 25 May 1996  相似文献   

9.
Multilocus DNA fingerprinting and microsatellite analysis were used to determine the number of queens and their mating frequencies in colonies of the carpenter ant, Camponotus ligniperdus (Hymenoptera: Formicidae). Only 1 of 61 analyzed queens was found to be double-mated and the population-wide effective mating frequency was therefore 1.02. In the studied population, 8 of 21 mature field colonies (38%) contained worker, male, or virgin queen genotypes which were not compatible with presumed monogyny and therefore suggested oligogyny, i.e., the cooccurrence of several mutually intolerant queens within one colony. Estimated queen numbers in oligogynous colonies ranged between two and five. According to the results of the genetic analysis, most of the queens coexisting in oligogynous colonies were not closely related. Pleometrosis is very rare and queenless colonies adopt mated queens both in the laboratory and field. Therefore, the most plausible explanation for the origin of oligogynous colonies in C. ligniperdus is the adoption of unrelated queens by orphaned mature colonies. The coexistence of unrelated, but mutually intolerant queens in C. ligniperdus colonies demonstrates that oligogyny should be considered as a phenomenon distinct from polygyny. Received: 18 December 1997 / Accepted after revision: 20 June 1998  相似文献   

10.
Summary Field observations and laboratory experiments demonstrate that in the Australian meat ant, Iridomyrmex purpureus, the modes of colony founding are remarkably diverse. New colonies can originate from single foundresses (haplometrosis), or foundress associations (pleometrosis), or by colony budding, or the adoption of newly-mated queens that dig founding chambers next to mature nests (probably their natal nests, as workers protect them and may help them dig). Readoption of foundresses and pleometrosis lead to the coexistence of several queens in one nest. We discovered a striking antagonistic behavior among coexisting queens in young colonies, in the form of ritualized antennation bouts. These interactions result in a reproductive rank order in which dominant queens inhibit egg-laying by subordinates, but escalation into physical fighting is rare. Workers ignore queen dominance interactions and treat all queens equally. The first quantitative ethogram of dominance display behavior between multiple ant queens, and its reproductive consequences, is presented. As a colony grows, queens become intolerant of each other's presence and permanently separate within the nest. Once separated, queens appear to be equal in status, laying approximately equal numbers of eggs. All queens continue to be tolerated by workers, even when the colony has reached a size of several thousand workers and begun to produce reproductives. Such mature nests of I. purpureus fulfill the criteria of oligogyny, defined by worker tolerance toward more than one queen and antagonism among queens, such that a limited number of fully functional queens are spaced far apart within a single colony. Oligogynous colonies can arise in this species by pleometrotic founding (primary oligogyny) or by adoption of queens into existing nests (secondary oligogyny). The adaptive significance of the complex system of colony founding, queen dominance and oligogyny in I. purpureus is discussed.  相似文献   

11.
In insect societies, workers often try to challenge the reproductive monopoly of the queen by laying their own eggs. Successful worker reproduction, however, is frequently prevented by queen policing or worker policing, whereby either the mother queen or non-reproductive workers selectively kill worker-laid eggs. Recently, a third mechanism—“selfish” worker policing—has also been described in which the workers selectively police worker-laid eggs but also lay eggs themselves. Here, we present results from the monogynous wasp Dolichovespula norwegica, which show that all three kinds of policing—queen policing, worker policing and “selfish” worker policing—co-occur. The net effect of these three kinds of policing collectively favoured the queen’s reproduction, as within 1 day 44% of the worker-laid eggs versus only 8% of the queen-laid eggs were eaten. Of the worker-laid eggs that were killed by workers, approximately two thirds were eaten by the reproductive workers even though these made up only a small proportion, 8%, of the work force. This means that policing workers obtained both direct fitness benefits as well as indirect (inclusive) fitness. In addition, we show that worker policing was carried out by a limited, specialised set of workers that was estimated to constitute approximately one quarter of the whole colony and of which 66% were non-reproductive.  相似文献   

12.
Queen and worker Bombus terrestris have different optima for the timing of gyne production. Workers, being more related to their gyne-sisters than to their sons, should ascertain that gyne production has started before attempting to reproduce. Their optimal timing for gyne production will be as early as possible, while allowing sufficient ergonomic colony growth to support gyne rearing. Queen optimum, on the other hand, should be to postpone gyne production toward the end of colony life cycle, in order to minimize the time-window available for worker reproduction. Thus, the timing of gyne production may profoundly affect the outcome of queen–worker competition over male production. In this study we investigated some of the social correlates possibly affecting this timing. It was found that neither keeping colony size constant and as low as 20 workers, nor decreasing worker average age, influenced the onset of gyne production. To test the effect of queen age we created young colonies with old queens and vice versa. When colony social composition remained unchanged, in young colonies headed by old queens gynes were produced earlier than predicted, but in the inverse situation gyne production was not delayed. When colony social composition was completely standardized queen age had a decisive effect, indicating that the timing of gyne production is both under queen influence and affected by queen age. Furthermore, queens assess colony age from the time of first worker emergence rather than from their own first oviposition. In these experiments the factors affecting gyne production also affected the onset of queen–worker conflict for male production, suggesting that both are regulated by the same causal effect. Postponing gyne production as much as possible provides another mechanism, in addition to extensive oophagy, for the queen to outcompete her workers in male production.  相似文献   

13.
Queen pheromones interfere with worker reproduction in social insects. However, there is still an unresolved question as to whether this pheromone acts as an “honest” signal for workers, giving a reliable indication of the queen’s reproductive value, or as a suppressive agent, inhibiting worker reproduction independent of the queen’s reproductive capacity. In honeybees (Apis mellifera), the queen’s mandibular gland secretion, a mix of fatty acids and some aromatic compounds, is crucial for regulating the reproductive division of labor in the colony inhibiting ovary development in workers. We quantified the mandibular gland secretions of virgin, drone-laying, and naturally mated queens using gas chromatography to test whether the queens’ mating, ovary activation, or the reproductive value for workers correlated with the composition of the secretion. Although the absolute amounts of the “queen substance” 9-oxo-2(E)-decenoic acid (9-ODA) were similar among the three groups, the proportions of 9-ODA decreased with increasing reproductive quality. Furthermore, the ratios of queen to worker compounds were similar in all three treatment groups, irrespective of the reproductive capacity. A multivariate analysis including all six compounds could not separate drone-laying queens from naturally mated ones, both with active ovaries but only the latter ensuring colony survival. We suggest that the mandibular gland pheromones are unlikely to function as reliable indicators of queen reproductive value and rather operate as an agent to suppress worker reproduction. This does not exclude the possibility that other “honest” pheromone signals exist in the honeybee colony, but these would have to arise from other semiochemicals, which could be produced by both the queen and the brood.  相似文献   

14.
Communal breeding can be characterized by the division of reproduction among cooperating individuals and, if the distribution of reproduction is inequitable, by the mechanisms for achieving skewed reproductive success. The burying beetle (Nicrophorus tomentosus) is a facultative communal breeder. Unrelated adults, especially females, provide extensive parental care to broods of mixed parentage. The frequency and degree of reproductive skew between two females were examined experimentally. On medium-size carcasses, the proportion of eggs attributed to each female was not significantly different from random in 42% of the broods, skewed in 42% and not shared in 16%. Although reproduction was usually skewed in favor of the larger female, the relative sizes of the two females did not predict the degree of skew. On large carcasses, the proportion of eggs attributed to each female was not different from random in 87% of the broods and weakly skewed in 13%. Several mechanisms for biasing reproductive success were investigated. Females increase the proportion of their offspring in the brood by committing differential ovicide. Secondly, burying and preparing a carcass cooperatively stimulates ovarian development of the larger female and slows it for the smaller female, reducing or delaying oviposition by the subordinate. Thirdly, larger females are more likely to be dominant and are more fecund than smaller females. Received: 20 July 1996 / Accepted after revision: 30 November 1996  相似文献   

15.
We investigated competition for food among two groups of six clone amagos (salmonids), Oncorhynchusmasoumacrostomus, in a laboratory experiment with different rates of food input. We examined the effect of temporal clumping of food resources on the inequality of food sharing between competitors. Monopolization of food by dominants was greater at a low input rate (one food item per 10 s) than at a high input rate (1 food item per 1 s). Aggressive behavior by dominants was more frequent at the low input rate than at the high input rate; its purpose was presumably to interfere with the feeding behavior of subordinates. We assessed the relative importance of three foraging factors (the number of approaches to food items, the chance per approach and the gain per chance) in enhancing inequality in food gain between individuals. Dominants had a disproportionately high chance per approach and gain per chance at the low input rate, but not at the high input rate. The chance of obtaining a food item per approach depended on how many competitors approached simultaneously. The gain per chance depended on the competitive ability of the approaching fish. There was an interaction between these components, such that the number of approaches affected the chance per approach and gain per chance. We evaluated the independent effect of the chance per approach, and showed that it was higher for dominants than for subordinates at the low input rate, but not at the high input rate. This implies that subordinates changed their behavior and became more likely to avoid approaching food at the same time as dominants at the low input rate. Received: 13 August 1996 / Accepted after revision: 30 November 1996  相似文献   

16.
According to the weight and size of their prey, Ectatomma ruidum workers can employ different recruitment systems (solitary hunting, cooperative hunting and group hunting with recruitment) when mastering and retrieving prey items from short distances from the nest. Prey size determined the backwards entry typically adopted by this species, while prey weight determined the predatory strategy selected. After a common initial sequence (search for prey, detection, localization), predatory sequences varied in terms of the type of approach, the site of seizure, the reaction after stinging and the type of transport. Nevertheless, irrespective of prey weight and size, seizure was preferentially oriented towards the head and prey were always stung. Short-range recruitment and mass recruitment without trail laying were elicited by a large range of heavy prey (> 2.5 times the weight of an individual worker). According to the mortality risk associated with each prey, hunters exhibited a “prudent” stinging posture associated with an increase in the duration of the subsequent phase of waiting for prey immobilization. The overall time of capture was positively correlated with the weight of the prey. When collective hunting strategies were involved, E. ruidum colonies matched the number of recruited hunters to the size and weight of the prey. Compared to solitary hunting strategies, for short food–nest distances, this graded recruitment appeared to enhance the energetic benefits derived by this species from the use of recruitment systems: the higher the number of workers involved in the recruitment process, the greater the energetic benefits obtained. The exhibition or absence of trail laying behavior in the recruitment responses displayed by E. ruidum workers is discussed in relation to their involvement in scavenging or predatory behavior. Received: 27 June 1996 / Accepted after revision: 3 March 1997  相似文献   

17.
In ants dispersing through colony fission, queens mate near their natal nest and found a new society with the help of workers. This allows potential future queens to challenge the mother queen’s reproductive monopoly. Conflicts might be resolved if the mated queen signals her presence and the workers control the developmental fate of the diploid larvae (whether they develop to worker or queen). In this study we sought to determine whether, in the fission-performing ant Aphaenogaster senilis, conflicts between queens for control of the colony are resolved by the resident queen signalling her mating status. Virgin queens were less effective than newly mated queens in inhibiting queen rearing. Moreover, potential challenger queens were recognized and heavily aggressed independent of mating status. Chemical analyses showed that mating status was associated with changes in cuticular hydrocarbon and poison gland composition, but not in Dufour’s gland composition. Cuticular dimethylalkanes were identified as potential constituents that signal both caste (present in queens only) and mating status (mated queens have higher amounts). We hypothesised that pheromone emission by virgin queens did not reach the threshold needed to fully inhibit larval development into queens but was sufficiently high to stimulate overt aggression by mated queens. These findings provide evidence for the complexity of chemical communication in social insects, in which a small number of signals may have a variety of effects, depending on the context.  相似文献   

18.
Workers of a queenless honeybee colony can requeen the colony by raising a new queen from a young worker brood laid by the old queen. If this process fails, the colony becomes hopelessly queenless and workers activate their ovaries to lay eggs themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce female offspring as an additional pathway for requeening. We tested the frequency of successful requeening in ten hopelessly queenless colonies. DNA genotyping revealed that only 8% of all queens reared in hopelessly queenless colonies were the offspring of native laying worker offspring. The vast majority of queens resulted from parasitic takeovers by foreign queens (27%) and invading parasitic workers (19%). This shows that hopelessly queenless colonies typically die due to parasitic takeovers and that the parasitic laying workers are an important life history strategy more frequently used than in providing a native queen to rescue the colony. Parasitism by foreign queens, which might enter colonies alone or accompanied by only a small worker force is much more frequent than previously considered and constitutes an additional life history strategy in Cape honeybees.  相似文献   

19.
Social Hymenoptera are general models for the study of parent-offspring conflict over sex ratio, because queens and workers frequently have different reproductive optima. The ant Pheidole pallidula shows a split distribution of sex ratios with most of the colonies producing reproductives of a single sex. Sex ratio specialization is tightly associated with the breeding system, with single-queen (monogynous) colonies producing male-biased brood and multiple-queen (polygynous) colonies female-biased brood. Here, we show that this sex specialization is primarily determined by the queens influence over colony sex ratio. Queens from monogynous colonies produce a significantly more male-biased primary sex ratio than queens from polygynous colonies. Moreover, queens from monogynous colonies produce a significantly lower proportion of diploid eggs that develop into queens and this is associated with lower rate of juvenile hormone (JH) production compared to queens from polygynous colonies. These results indicate that queens regulate colony sex ratio in two complementary ways: by determining the proportion of female eggs laid and by hormonally biasing the development of female eggs into either a worker or reproductive form. This is the first time that such a dual system of queen influence over colony sex ratio is identified in an ant.  相似文献   

20.
Monogyne fire ant, Solenopsis invicta, colony workers are territorial and are aggressive toward members of other fire ant colonies. In contrast, polygyne colony workers are not aggressive toward non-nestmates, presumably due to broader exposure to heritable and environmentally derived nestmate recognition cues (broad template). Workers from both monogyne and polygyne fire ant colonies execute newly mated queens after mating flights. We discovered that monogyne and polygyne queens have a remarkable effect on conspecific recognition. After removal of their colony queen, monogyne worker aggression toward non-nestmate conspecifics quickly drops to merely investigative levels; however, heterospecific recognition/aggression remains high. Queenless monogyne or polygyne worker groups were also not aggressive toward newly mated queens. Queenless worker groups of both forms that adopted a monogyne-derived newly mated queen became aggressive toward non-nestmate workers and newly mated queens. We propose that the powerful effect of fire ant queens on conspecific nestmate recognition is caused by a queen-produced recognition primer pheromone that increases the sensitivity of workers to subtle quantitative differences in nestmate recognition cues. This primer pheromone prevents the adoption of newly mated queens (regulation of reproductive competition) in S. invicta and when absent allows queenless workers to adopt a new queen readily. This extraordinary discovery has broad implications regarding monogyne and polygyne colony and population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号