首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm.  相似文献   

2.
Leaf powder of spear grass, otherwise known as Imperata cylindrica (IC), was used to prepare activated carbon. The Imperata cylindrica activated carbon (ICAC) prepared was used for the removal of Congo red (CR) dye from aqueous solution. Operation parameters such as initial dye concentration, contact time, adsorbent dosage, pH, and temperature were studied in batch systems. Equilibrium was attained in 150 and 180?min at lowest and highest concentrations, respectively. Maximum adsorption was observed at pH 3. Quantum chemical studies suggested that the protonation of aniline groups and minimal molecular size at planar geometry coupled with electrostatic interaction enhances the adsorption at low pH. Adsorption data were tested using pseudo-first-order and second-order reaction kinetics; the latter was found to be more suitable with a coefficient of determination of ≥0.99. The adsorption process fits Langmuir isotherm model better than the Freundlich model, with a maximum monolayer coverage of 313?mgg?1. This study shows that ICAC is effective in removing CR dye from aqueous solutions.  相似文献   

3.
Chemically prepared activated carbon derived from banana stalk (BSAC) was used as an adsorbent to remove malachite green (MG) dye from aqueous solution. BSAC was characterised using thermogravimetric analyser, Brunauer Emmett Teller, Fourier transform infrared spectrometry, scanning electron microscopy, pHpzc, elemental analysis and Boehm titration. The effectiveness of BSAC in adsorbing MG dye was studied as a function of pH, contact time, temperature, initial dye concentration and repeated desorption–adsorption processes. pHpzc of BSAC was 4.5 and maximum dye adsorption occurred at pH 8.0. The rate of dye adsorption by BSAC was very fast initially, attaining equilibrium within 120 min following a pseudo-second-order kinetic model. Experimental data were analysed by Langmuir, Freundlich and Dubinin–Raduschevich isotherms. Equilibrium data fitted best into the Langmuir model, with a maximum adsorption capacity of 141.76 mg·g?1. Δ G 0 values were negative, indicating that the process of MG dye adsorption onto BSAC was spontaneous. The positive values of Δ H 0 and Δ S 0 suggests that the process of dye adsorption was endothermic. The regeneration efficiency of spent BSAC was studied using 0.5 M HCl, and was found to be in the range of 90.22–95.16% after four cycles. This adsorbent was found to be both effective and viable for the removal of MG dye from aqueous solution.  相似文献   

4.
Studies on the suitability of various chemically prepared activated carbons (CPACs) like straw carbon (SC), sawdust carbon (SDC), dates nut carbon (DNC) and commercial activated carbon (CAC) for the removal of copper(II) ions by adsorption from simulated wastewater have been carried out under batch mode at 30?±?1°C and the results are compared. The percentage removal of Cu(II) ions increased with a decrease in initial concentration, particle size and added electrolytes (ionic strength) and increased with an increase in contact time, dose of adsorbent and initial pH of the solution. The adsorption data were fitted with the Langmuir isotherm. The applicability of the first order kinetic equation viz. Lagergren equation was tested by correlation analysis. The adsorption process is concluded to be a spontaneous, first order reaction, occurring with increased randomness at the solid–liquid interface. Studies on the desorption of Cu2+-loaded activated carbons (ACs) were carried out with nitric acid (0.2–1?N). The possibility of reuse of the regenerated ACs in cycle (in cue-one after another) was tested. SC was found to be a suitable adsorbent alternative to CAC among CPACs for the removal of metal ions, in general, and Cu2+ ions, in particular.  相似文献   

5.
Highly activated carbon from the seed husk of Casuarina Casuarinas equisetifolia, a worldwide famous plant, have been prepared and tested for the removal of toxic Cr(VI) from its aqueous solution. The adsorbent was investigated for influences of initial chromium concentration (75, 100, 125, and 150 mg l-1), pH, contact time, and quantity of carbon on removal of Cr(VI) from aqueous solution at room temperature (25±2 °C). The adsorption kinetic of Cr(VI) was studied, and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R2≥0.99). The Langmuir and Freundlich models fit the isotherm data well. Furthermore, the Gibbs free energy was obtained for each system and was found to be-5.29 kJ mol-1 for removal of Cr(IV). The negative value of Δ G° indicates the feasibility and spontaneous nature of adsorption. The results indicate that acidic pH (1.05) supported the adsorption of Cr(IV) on activated carbon. The maximum adsorption capacity of Cr(VI) on activated carbon was about 172.4 mg g-1 at pH 1.05.  相似文献   

6.
The purpose of this research is to obtain optimal processing conditions for the adsorption of Remazol Brilliant Violet-5R (RBV-5R) dye onto activated carbon prepared from periwinkle shells (PSAC) by chemical activation with KOH using response surface methodology. Central composite design (CCD) was used to determine the effects of three preparation variables; CO2 activation temperature, CO2 activation time and KOH:char impregnation ratio (IR) on two responses; percentage RBV-5R dye removal and PSAC yield. Based on the CCD, two quadratic models were developed for percentage RBV-5R dye removal and PSAC yield, respectively. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the adsorption of RBV-5R dye onto PSAC were CO2 activation temperature of 811 °C, CO2 activation time of 1.70 h and IR of 3.0, resulting in 81.28% RBV-5R dye removal and 28.18% PSAC yield. PSAC prepared under optimum conditions was mesoporous with a Brunauer–Emmett–Teller surface area of 1894 m2·g?1, total pore volume of 1.107 cm3·g?1 and average pore diameter of 2.32 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.  相似文献   

7.
A comparison between activated charcoal and heat-treated coal for decolourization of pulp and paper mill waste water was studied. The heat-treated coal was prepared in an inert atmosphere at 800°C. The adsorption dynamics that include batch contact–time study, kinetics along with adsorption isotherms were carried out. The study shows that heat-treated coal is a suitable adsorbent and can be used for the decolourization of pulp and paper mill effluent streams. The maximum removal was achieved at the initial stages of contact, and the overall adsorption was a slow process. However, the equilibrium concentration in the case of both the adsorbents reaches at almost same time. The linear plot of the Lagergren model shows its applicability and first-order kinetics.  相似文献   

8.
Removal of Cu2+, Cd2+, Pb2+, and Zn2+ from aqueous solutions by activated carbon prepared from stems and seed hulls of Cicer arietinum, an agricultural solid waste, has been studied. The influence of various parameters, such as pH, contact time, adsorbent dose, and initial concentration of metal ions on removal was evaluated. The activated carbon was characterized by FT-IR spectroscopy, X-ray diffraction, and elemental analysis. Sorption isotherms were studied using Langmuir and Freundlich isotherm models. All experimental sorption data were fitted to the sorption models using nonlinear least-squares regression. The maximum adsorption capacity values for activated carbon prepared from Cicer arietinum waste for metal ions were 18 mg g?1 (Cu2+), 18 mg g?1 (Cd2+), 20 mg g?1 (Pb2+), and 20 mg g?1 (Zn2+), respectively. The Freundlich isotherm model fit was best, followed by the pseudo-second-order kinetic model. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ions and for regeneration of the adsorbent.  相似文献   

9.
The effective use of activated charcoal as an oral adsorbent for primary treatment of acute poisoning was investigated in vitro by evaluating the characteristics of mexiletine, an anti-arrhythmic drug, adsorbed onto activated charcoal in the presence of sodium chloride solutions at various concentrations. The equilibrium amount of mexiletine adsorbed onto activated charcoal was increased by the addition of sodium chloride. In particular, there was a marked increase in the amount adsorbed from a solution of lower mexiletine concentration. The removal rate is another important factor in the evaluation of activated charcoal, and a rapid decrease of mexiletine concentration by the addition of sodium chloride was recognized. The acceleration of mexiletine adsorption onto activated charcoal by the addition of sodium chloride was due to the occurrence of salting-out. It could be concluded that the administration of activated charcoal suspended in saline solution was more effective in the primary treatment of acute poisoning by mexiletine overdose.  相似文献   

10.
Magnetic particles prepared via co-precipitation and impregnated onto wheat husk (MN-WH) were used for the removal of methyl blue (MB) from aqueous solution. Experiments were conducted in a batch mode for optimization regarding pH, contact time, adsorbent dose, initial dye concentrations, and temperature. Maximum adsorption (98%) was achieved at pH 5. The adsorption data were fitted into pseudo-first, pseudo-second, intraparticle diffusion, and Elovich equation revealing that adsorption followed pseudo-second-order kinetics. The four most common isotherm models, i.e. the Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich (D–R), were used to evaluate the data, with the best fit to a Langmuir isotherm (R2 = 0.996), followed by a Freundlich isotherm (R2 = 0.995), indicating monolayer adsorption of MB on the surface of MN-WH. Thermodynamic parameters calculated from the Van't Hoff equation revealed that the adsorption is exothermic (ΔHº = ?19.7 kJ mol?1).  相似文献   

11.
The adsorption of acid brown 75 onto kaolinite in aqueous solution was studied with respect to the pH, adsorbent dosage, contact time, initial concentration, and operating temperature. Desorption of dye from dye-saturated kaolinite was observed. Experimental data indicated that the adsorption capacity of kaolinite for the dye was higher in acidic rather than in basic solution. The maximum adsorption capacity of kaolinite towards the dye was found to be 96.5 mg g?1 (pH 1.0). At the optimal adsorption condition, the dye removal ratio was 95.5%. Dye-saturated kaolinite could desorb at aqueous NaOH, the desorption ratio of dye was 78.8%. The linear Langmuir and Freundlich isotherm models are well fitting to represent the experimental data.  相似文献   

12.
A Cu-Co-K/activated carbon (AC) adsorbent has been developed for the removal of carbonyl sulfide (COS). The effects of COS concentration, reaction temperature and relative humidity were closely examined. A breakthrough of 33.23 mg COS·g−1 adsorbent at 60°C, under 30% relative humidity and in presence of 1.0% oxygen was exhibited in the Cu-Co-K/AC adsorbent prepared. Competitive adsorption studies for COS in the presence of CS2, and H2S were also conducted. TPD analysis was used to identify sulfur-containing products on the carbon surface, and the results indicated that H2S, COS and SO2 were all evident in the effluent gas generated from the exhausted Cu-Co-K/AC. Structure of the activated carbon samples has been characterized using nitrogen adsorption, and their surface chemical structures were also determined with X-ray photoelectron spectroscopy (XPS). It turns out that the modification with Cu(OH)2CO3-CoPcS-KOH can significantly improve the COS removal capacity, forming SO42 species simultaneously. Regeneration of the spent activated carbon sorbents by thermal desorption has also been explored.  相似文献   

13.
The adsorption of a synthetic textile dye (Remazol Brilliant Black Reactive) on cocoa pod husk-based activated carbon was investigated in batch process. The adsorbent prepared was characterized by gas adsorption surface analysis (Brunauer Emmett Teller, BET), scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, the first being the best with maximum monolayer coverage of 111?mg?g?1. Kinetic data were fitted into pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models; the pseudo second-order model provided the best correlation. Maximum adsorption was observed at pH 7. Standard free energy, standard enthalpy, and standard entropy were also calculated. The adsorption interaction was found to be endothermic and spontaneous. Both the mean free energy of adsorption and the activation energy show that the mechanism is by physisorption.  相似文献   

14.
利用稀土基无机合成材料去除饮用水中砷的研究   总被引:20,自引:0,他引:20  
张昱  杨敏  王桂燕  黄霞 《环境化学》2001,20(1):70-75
本文研制了一种新型除砷吸附剂,即基于稀土金属铈的无机铈铁吸附剂,并对该吸附剂的除砷效果进行了评价.活性氧化铝和新型研制的铈铁吸附剂对As(Ⅴ)吸附平衡比较实验结果表明:活性氧化铝除砷的最佳 pH为 3.5-5.5,最大吸附量为86mg As(Ⅴ)·g-1;而铈铁吸附剂的pH适用范围广,在pH3-7的范围内具有较高的除砷性能,最大吸附量可达16.0mgAs(Ⅴ)·g-1,该吸附材料对As(Ⅴ)的吸附基本符合Freundlich型等温方程式,硬度、盐度和氟离子不干扰吸附过程,但磷酸根离子干扰材料对As(Ⅴ)的吸附、铈铁无机吸附材料在饮水除砷中具有比较大的应用前景.  相似文献   

15.
The present investigation deals with fluoride removal from aqueous solution by thermally activated neem (Azadirachta indica) leaves carbon (ANC) and thermally activated kikar (Acacia arabica) leaves carbon (AKC) adsorbents. In this study neem leaves carbon and kikar leaves carbon prepared by heating the leaves at 400 degrees C in electric furnace was found to be useful for the removal of fluoride. The adsorbents of 0.3 mm and 1.0 mm sizes of neem and kikar leaves carbon was prepared by standard sieve. Batch experiments done to see the fluoride removal properties from synthetic solution of 5 ppm to study the influence of pH, adsorbent dose and contact time on adsorption efficiency The optimum pH was found to be 6 for both adsorbents. The optimum dose was found to be 0.5g/100 ml forANC (activated neem leaves carbon) and 0.7g/100 ml forAKC (activated kikar leaves carbon). The optimum time was found to be one hour for both the adsorbent. It was also found that adsorbent size of 0.3 mm was more efficient than the 1.0 mm size. The adsorption process obeyed Freundlich adsorption isotherm. The straight line of log (qe-q) vs time at ambient temperature indicated the validity of langergren equation consequently first order nature of the process involved in the present study. Results indicate that besides intraparticle diffusion there maybe other processes controlling the rate which may be operating simultaneously. All optimized conditions were applied for removal of fluoride from four natural water samples.  相似文献   

16.
In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor (RL<1) for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.  相似文献   

17.
We report the adsorption isotherm of acid dye on the surface of chitin, a unique solid adsorbent. Adsorption process offers an attractive benefit for a dyeing house treatment. Influences of essential kinetic parameters such as adsorbent particle size, reaction temperature governing the dye adsorption have been investigated. Adsorptions isotherms of dye on chitin were developed and the equilibrium data fitted well to the Langmuir, Freundlich and Redlich Peterson isotherm model. At optimum conditions maximum dye adsorption capacity of chitin estimated with the Langmuir 44.0, 85.0, 104.3 mg/g and 85.0, 114.10, 113.62 mg/g adsorbent. The results showed that chelating polymer of chitin could be considered as potential adsorbents for acid dye removal from dilute solution.  相似文献   

18.
The adsorption of chromium(VI) onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of contact time, adsorbent dose, Cr(VI) concentration, pH and temperature were investigated. The two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q 0) was found to be 120.5?mg Cr(VI) per g of the adsorbent. The adsorption followed the second-order kinetics and was found to be maximum at pH 2.0. The pH effect and the desorption studies showed that ion exchange mechanism might be involved in the adsorption process. The effects of foreign ions such as chloride, sulphate, phosphate, selenite, molybdate, nitrate and perchlorate on the removal of Cr(VI) have been investigated. The removal of Cr(VI) from synthetic ground water was also tested. The results show that ZnCl2 activated coir pith carbon is effective for the removal of Cr(VI) from water.  相似文献   

19.
The ability of ackee apple (AA) seeds to remove Congo Red (CR) dye from aqueous solution was investigated. AA was characterised using thermo gravimetric analyser, scanning electron microscopy, Braunauer Emmett Teller, pHpzc, elemental analysis and Boehm titration. The effects of operational parameters such as adsorbent dosage, contact time, initial dye concentration and solution pH were studied in a batch system. pH has a profound influence on the adsorption process. Maximum dye adsorption was observed at pH 3.0. The reaction was fast, reaching equilibrium in 90 min. Adsorption data were best described by Langmuir isotherm and the pseudo-second-order kinetic model with a maximum monolayer coverage of 161.89 mg·g?1. Both boundary layer and intraparticle diffusion mechanisms were found to govern the adsorption process. Thermodynamic parameters such as standard free energy change (Δ G 0), standard enthalpy change (Δ H 0), and standard entropy change (Δ S 0) were studied. Values of Δ G 0 varied between?30.94 and?36.56 kJ·mol?1, Δ H 0 was 25.61 kJ·mol?1, and Δ S 0 was 74.84 kJ·mol?1·K?1, indicating that the removal of CR from aqueous solution by AA was spontaneous and endothermic in nature. Regeneration and reusability studies were carried out using different eluents. AA gave the highest adsorption efficiency up to four cycles when treated with 0.3 M HCl. AA was found to be an effective adsorbent for the removal of CR dye from aqueous solution.  相似文献   

20.
Adsorptive removal of Acid Blue 127 and Acid Yellow 17 from their single and binary solutions has been studied using powdered activated carbon (PAC). The dyes used extensively for dying of nylon fiber in textile industry are known as Nylomine Blue P-B (NB) and Nylomine Yellow P-4G (NY), respectively. Time-dependent results obtained from single-component system have been better predicted by two resistance diffusion model rather than homogeneous surface diffusion. The magnitudes of film- and intraparticle diffusion coefficients calculated from McKay equation are ~10?9 and ~10?15 m2 s?1, whereas surface diffusion coefficients have been estimated as ~10?13 m2 s?1 using Vermeulen approximation. Experimental equilibrium isotherms have been evaluated by changing initial dye concentrations in the range of 0.02–1.00 of mmol L?1. Freundlich isotherm parameters for individual solutions of the dyes have been used to predict their equilibrium behaviors in binary solutions by applying extended Freundlich model. Langmuir isotherm model and its extended form have also been fitted to the data for single- and binary-dye solutions, respectively. Thermodynamic functions derived from the temperature dependence of adsorption equilibrium constants in 298–318 K range show that adsorption processes are endothermic but spontaneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号