首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
于2017年夏季对骆马湖浮游植物群落进行调查,探讨骆马湖浮游植物群落结构变化与环境因子的关系,以期为骆马湖生态保护提供科学依据。此次调查鉴定出浮游植物6门32属,其中,绿藻门属数最多,其后依次为蓝藻门和硅藻门,优势属主要为浮游蓝丝藻、微囊藻和小球藻。全湖浮游植物细胞丰度在2.63×10~5~2.85×10~7 cells·L~(-1)之间,生物量在0.092~4.522 mg·L~(-1)之间。全湖浮游植物Shannon-Wiener指数在0.60~2.60之间,平均值为1.75,且9月浮游植物Shannon-Wiener指数显著高于8月(P0.05),但不同点位之间多样性指数的差异未达显著水平(P0.05)。与往期骆马湖调查结果相比,此次调查得到的全湖多样性指数差异不大,细胞丰度明显增加,优势属多集中在蓝藻门和绿藻门,尤其是浮游蓝丝藻明显增多。从近几年的优势属种类、藻类细胞密度变化来看,骆马湖富营养化程度依然在加剧。RDA分析结果表明,水温、溶解氧浓度和氮磷比的共同作用解释了骆马湖夏季浮游植物群落结构变化的28.16%。其中,骆马湖浮游植物群落结构的变化受采砂、围网养殖及夏季人类活动影响较大。因此,减少人为活动干扰对于保护骆马湖水质和南水北调工程水质势在必行。  相似文献   

2.
全球气候变化背景下台湾海峡浮游植物的长期变化   总被引:5,自引:0,他引:5  
为了解气候–海洋环境变异的生态影响,阐述并比较了1984~1985年和2006~2008年台湾海峡浮游植物分布的时空变化特征.结果表明:浮游植物物种多样性指数和均匀度分别由3.29和0.62降至2.90和0.55;平均细胞密度增加3.7倍,由372.0×104 cells/m3增加到173 8.8×104 cells/m3;种类组成里暖水种比例提高了7.3%,由45.9%上升到53.2%;浮游植物主要优势种组成趋于简单和小型化,如小型硅藻柔弱拟菱形藻(Pseudonitzschia delicatissima)和细弱海链藻(Thalassiosira subtilis),其平均丰度和优势度显著提高.浮游植物群落的这些年代际分布变异可看作全球气候长期变暖背景下对台湾海峡环境变化的生态学响应迹象.图3表6参34  相似文献   

3.
太湖浮游植物群落结构及其与水质指标间的关系   总被引:5,自引:0,他引:5  
为了探讨太湖浮游植物群落结构时空分布特征、以及太湖浮游植物群落指标与水质指标间的关系,于2013年1月─2013年12月对太湖7个点位浮游植物群落结构和水质指标(水温、透明度、pH、溶解氧、电导率、总氮、总磷、氨氮、高锰酸盐指数、化学需氧量、氟化物、生化需氧量、硝酸盐氮、亚硝酸盐氮、溶解性磷酸盐和叶绿素a)进行月度调查,研究其浮游植物群落结构和湖泊水质的时空分布;并利用Pearson相关性分析浮游植物密度、浮游植物多样性与水质指标间的关系;找出影响太湖浮游植物群落结构的主要水质指标。结果表明:太湖7个点位共获得124种浮游植物物种,其中蓝藻门(Cyanophyta)30种、绿藻门(Bacillariophyta)47种、硅藻门(Chlorophyta)34种、隐藻门(Cryptophyta)3种、裸藻门(Euglenophyta)6种和甲藻门(Dinoflagellate)4种;其中蓝藻门的微囊藻属(Microcystis spp.)为绝对优势种群,优势度为80.8%;太湖浮游植物总密度与蓝藻门密度呈极显著正相关(r=1.000,P<0.0001);绿藻门和硅藻门占浮游植物总密度百分比分别和蓝藻门占浮游植物总密度百分比呈极显著负相关(r=-0.497,P<0.0001;r=-0.814,P<0.0001)。太湖7个点位水质首要污染物为总氮,其次是总磷和化学需氧量;西太湖污染物浓度最高。从空间上看,太湖浮游植物总密度最高值出现在贡湖湾(远离其入湖口处),且贡湖湾浮游植物群落多样性相对低于太湖其他点位,同时贡湖湾微囊藻属密度百分比达90.1%,远高于太湖其他点位;从时间上看,太湖浮游植物总密度最高值出现在12月份、其次是6月份;通过浮游植物群落指标与水质指标相关性分析,水温、透明度、总氮、化学需氧量、叶绿素a是影响太湖浮游植物群落结构的主要水质指标。控制太湖入湖口水质污染物浓度排放和修?  相似文献   

4.
目前,有关多沙河流中浮游植物群落特征与环境因子关系的研究报道极少。以黄河内蒙古河段为研究对象,研究多沙河流中浮游植物特征及其与环境因子之间的关系。从该河段上游至下游共设置了12个采样点进行浮游植物调查,并同步开展水温、溶解氧、总磷等水质因子的监测。在采用多样性指数、相似性指数等方法分析浮游植物群落特征的同时,也采用了非度量多维尺度法(Non-metric multidimensional scaling,NMDS)研究了浮游植物群落结构变化及其与环境因子的关系。研究结果表明:内蒙古河段从上游至下游,浮游植物种类组成以硅藻门和绿藻门为主;浮游植物生物量以硅藻门占优,而密度以蓝藻门占优;浮游植物物种数、密度与生物量沿程空间变化明显,呈现出两端低中间高的变化趋势。NMDS分析则进一步显示上下游两端的采样点与河段中间采样点浮游植物群落结构存在显著差异,结合水环境因子分析可知浊度(NTU)、悬浮物(SS)、COD对浮游植物群落结构存在显著影响,而总磷(TP)等营养盐因素影响较弱,这可能与黄河内蒙古河段河道地势及“水少沙多”的特征密切相关。  相似文献   

5.
于2009年7月23日~9月12日(共8周)研究了广东省大沙河水库湖泊区表层5 m水柱浮游植物群落结构和演替过程及其环境影响因子.降雨明显分为二个阶段,前4周降雨丰富,后4周降雨稀少;水体的透明度与水温也相应地分为二个阶段,但营养盐水平没有明显的变化.平均N/P为33,而可溶解磷浓度很低,说明浮游植物的生长受磷的限制较为强烈.浮游植物种类分析中共检到藻类64种,生物量变化为0.95~2.03 mg L-1,主要由绿藻、甲藻和蓝藻组成.1~5周浮游植物的总生物量变化较大,后3周总生物量变化相对较小.在整个采样期间,光角角星鼓藻(Staurastrum muticum)为第一优势种,弯曲角星鼓藻藻(Staurastrum inflexum)为第二优势种(二者约占总生物量的70%);在1~5周第三个优势种的种类和生物量有较大的变化,6~8周第三优势种为飞燕角甲藻(Ceratium hirundinella)且前3个优势种的组成和生物量较稳定(共占到总生物量的80%以上),群落结构处于稳态平衡状态.降雨带来的干扰是影响浮游植物群落稳态平衡的主要因子.当降雨的干扰结束后,浮游植物之间通过1周左右的竞争,浮游植物群落达到稳态平衡.  相似文献   

6.
惠州西湖生态修复对浮游植物的影响   总被引:2,自引:0,他引:2  
2007年广东惠州西湖子湖-南湖采用水生植被构建和修复等措施改变湖泊水质。通过2010年2月至11月对南湖和未修复的平湖的浮游植物群落的调查比较,研究湖泊生态系统修复对浮游植物群落结构的影响。结果表明:(1)南湖的浮游植物多样性指数高于平湖,两者峰值分别为1.93(nit),0.88(nit),分别在8月和2月,两湖均呈现2、8月高峰,5、11月低谷的变化特征。(2)南湖的浮游植物群落呈隐藻-绿藻(四尾栅藻Scenedesmus quadricuda)-甲藻(多甲藻Peridinium sp.)变化模式,平湖则全年以蓝藻门占绝对优势,优势种为银灰平列藻(Merismipedia sp.)和湖丝藻(Limnolothix sp.)。(3)南湖浮游植物的生物量和细胞丰度的平均值均远低于平湖。由此可知,重建水生植被为主的生态修复手段是抑制浮游植物发展和改善湖泊水环境的有效途径。  相似文献   

7.
为了解海州湾海洋牧场建设过程中,不同季节浮游植物群落年际变化特征及其与环境因子的关系,基于2008—2015年24个航次网采浮游植物和水质调查数据,比较了不同季节浮游植物群落的结构组成变化,并运用相关性和典范对应分析,探讨影响浮游植物群落结构变化的主要驱动因素。结果表明,调查期间,浮游植物种类数量呈现春季夏季秋季的特征,硅藻和甲藻为主要浮游植物优势种。硅藻丰度百分比例的季节变化特征为秋季(90.24%)夏季(84.25%)春季(77.61%),甲藻丰度为春季(16.83%)夏季(12.33%)秋季(10.91%)。相关性和典范对应分析表明,在浮游植物物种多样性和丰度较高的夏、秋季节,第一、二优势种的Y值偏小,其他浮游植物种类数量较多,均匀度也较高;而春季第一、二优势种的Y值较高,春季多样性和丰度较低。溶解氧是影响春、夏两季圆筛藻(Conscinodiscus)优势度变化的主要环境因子,而秋季环境条件较好,可满足浮游植物的生长需求,种间竞争作用导致优势种Y值偏小,丰度和均匀度最高。  相似文献   

8.
目前鲜有从生物群落角度定量分析连通性。作者以建有多级节制闸的沙颍河干流为对象,研究河流纵向连通性对沙颍河干流浮游植物群落的影响,并尝试基于梯度分析方法从浮游植物群落角度定量评估河流连通性。调查结果显示,沙颍河干流浮游植物339种,分为8个门类,以硅藻门浮游植物种类(170种)最多,其次是绿藻门(93种)和蓝藻门(37种)。从季节来看,夏秋季浮游植物种类显著多于春季;从浮游植物密度和生物量来看,春秋季以隐藻门浮游植物为主,而在夏季蓝藻门浮游植物密度最高。优势度排前10的种类蓝藻门有4种,隐藻门3种,硅藻门2种,绿藻门1种。通过比较不同季节浮游植物群落组成可知,闸坝阻隔对浮游植物群落结构具有较大影响,群落结构组成从常见的以硅藻为主的河流群落特征转变为以蓝藻、隐藻为主的湖泊群落特征。根据DCA(Detrended Correspondence Analysis)第1轴长,均采用PCA(Principal Component Analysis)排序法对不同季节浮游植物密度和生物量进行分析,并绘制排序图,结果表明,不同河段浮游植物群落特征可在排序图中区分开来,表明不同河段之间的浮游植物群落结构存在差异;不同河段之间浮游植物群落特征在排序图中的相对位置及河段的实际相对位置,可以在群落空间中明确表征河流连通性的潜在生态梯度。从水生生物群落角度定量表征连通度的大小,将有助于建立基于生物群落计算河流纵向连通程度的方法。  相似文献   

9.
浮游植物是海洋生态系统的主要生产者,其群落结构与水质密切相关.为揭示汕头南澳岛环境特征,于2018年1月(冬季)和4月(春季)在环南澳岛近岸海域设置12个采样站位,开展浮游植物群落结构和水环境调查.冬季共发现浮游植物74种,以硅藻为主,优势种为具槽帕拉藻(Paralia sulcate),浮游植物丰度平均值为(3.45±1.59)×104 cells/L;春季共发现浮游植物80种,以硅藻和甲藻为主,优势种为新月菱形藻(Nitzschia closterium),浮游植物丰度平均值为(5.23±6.02)×104 cells/L.春季浮游植物丰度和物种数较冬季高,优势种季节变化明显.冬季和春季浮游植物丰度均以青澳湾S11最高,该站位受到人类活动影响严重;深澳湾龙须菜栽培区S7浮游植物密度相对较低,说明龙须菜规模栽培对浮游植物生长抑制效应明显.冗余分析表明,冬季影响浮游植物群落结构的主要环境因子为总氮(TN)和水温(WT),春季为活性磷酸盐(PO_4~(3-)-P)、亚硝酸盐(NO_2~--N)和铵盐(NH_4~+-N).上述结果表明南澳岛近岸海域浮游植物群落结构与环境因子的时空分布差异显著,且浮游植物分布特征与水体营养盐关系密切,其中个别样点受人类活动影响较大,水质指标和浮游植物丰度都较高,呈现富营养化趋势;因此,应加强海岛环境和旅游业管理,控制陆源生活污水排放,保护海岛近海环境.(图5表4参41)  相似文献   

10.
国内有关浮游动植物群落之间关系的研究目前鲜有报道。为研究研究浮游植物与浮游动物之间的交互影响作用,以天鹅洲保护区长江干流河段为研究区域,分别于2014年10月(秋季)、2015年1月(冬季)、2015年5月(春季)和2015年7月(夏季)开展了浮游植物和浮游动物监测,采用种群更替率和DCA(Detrended Correspondence Analysis)分析了浮游植物和浮游动物群落四季变化特征,并进一步采用CoCA(Co-CorrespondenceAnalysis)揭示浮游植物与浮游动物群落之间的关联格局。结果显示,4次调查共检出浮游植物104种,其中硅藻58种,甲藻4种,金藻3种,蓝藻11种,裸藻2种,绿藻23种,隐藻3种;4次调查的浮游植物种类均以硅藻门浮游植物为主,其次是绿藻门与蓝藻门。浮游动物共检出88种,其中原生动物31种,轮虫27种,浮游甲壳动物30种。原生动物夏季种类数最高,为18种。轮虫则以春季与冬季种类数最高,同为16种。浮游甲壳动物则以春季种类数最高,为20种,桡足类种类多于枝角类。种群更替率结果显示,浮游植物和浮游动物种类随季节演替的变化均较明显,所有类群种群更替率均达到50%以上,尤其是轮虫在夏—秋间的演替率达到了78%。DCA分析进一步表明,浮游植物群落四季演替明显,但浮游动物四季变化差异不大。CoCA分析则显示,浮游植物群落与浮游动物群落之间交互影响显著,其中硅藻门浮游植物和浮游甲壳动物在冬季的相互影响最为突出。  相似文献   

11.
珠江口广州海域COD与DO的分布特征及影响因素   总被引:6,自引:0,他引:6  
于2003-2007年2月(冬季)、5月(春季)、8月(夏季)、10月(秋季)调查了广州海域16个站位的COD、DO以及其它理化因子的时空分布特征.调查期间,COD质量浓度范围为0.76~9.12 mg·L~(-1),平均值为2.83 mg·L~(-1);溶解氧质量浓度范围为1.98~9.79 mg·L~(-1),平均值为5.27 mg·L~(-1).结果表明,COD与DO的时空分布特征主要受生活污水排放,陆源排污,降雨量以及水动力状况等因素的影响.COD质量浓度在冬季和秋季较高,春季和夏季较低,而DO质量浓度则是冬季和春季高于秋季和夏季.空间分布上,COD质量浓度从湾内向湾外逐步递减,而DO变化趋势则相反,湾内站位在夏季出现缺氧区.相关性分析中,COD质最浓度与氮营养盐及Chl-a显著正相关,而DO则与COD、Chl-a、Ph以及石油烃显著负相关.COD与DO分布特征对于河口地区的赤潮及碳循环研究有一定研究价值.  相似文献   

12.
根据2009年4月在福建北部海域(24°47’17.0"~26°48’02.9"N,119°29’36.0"~120°57’13.8"E)所获浮游植物网采样品和同步观测的理化参数,并结合2007年"908专项"春季航次相应范围的调查资料,分析该海域浮游植物种类组成、分布特点、年际变化及其与环境因子的关系.本航次共记录浮游植物3个门类85种,其中硅藻75种、甲藻9种、蓝藻1种.物种组成以广温种为主(占47.06%),其次为暖水种(占36.47%),温带种仅占7.06%.调查区浮游植物丰度平均为137.89×104cells m-3,其平面分布呈现从近岸往外海、从北往南递增的态势.聚类分析显示本海区浮游植物可划分为2个群落,群落Ⅰ主要由近岸低盐种组成,仅分布于受浙闽沿岸流影响较直接的闽江口以北的近岸测站;群落Ⅱ主要为外海高盐种和广温广盐种,广泛分布于受台湾暖流影响较大的闽江口以南及三沙湾外侧水域.主成分分析(PCA)表明,对本海区浮游植物的分布起主导作用的是温度和盐度,而与营养盐的关系不密切,反映调查期间浙闽沿岸流已基本退出本海区,浮游植物的分布主要受制于台湾暖流.浮游植物丰度的平面分布格局与以往的调查结果基本一致,但其群落结构存在年际变化,"908专项"春季航次的优势种为近岸低盐种和广温广盐种,优势种突出,多样性指数低;而本次调查外海性广温种成为优势种之一,多样性指数(H’)和均匀度(J’)均较高,这可能与考察期间受东北季风强度所左右的浙闽沿岸流强弱有关.  相似文献   

13.
深圳湾浮游植物的季节变化   总被引:1,自引:0,他引:1  
2008年2月至11月对深圳湾的浮游植物和理化环境因子进行了4个季度月的调查,结果共检出浮游植物150种(包括变种和变型):春季66种、夏季72种、秋季54种、冬季50种,其中硅藻门36属108种,甲藻门14属36种,绿藻门3属3种,蓝藻门2属3种。优势种共有湖沼圆筛藻Coscinodiscus lacustris、中肋骨条藻Skeletonema costatum、夜光藻Noctiluca scientillans 3种:春季1种、夏季1种、秋季1种、冬季2种,优势种群由春夏季的湖沼圆筛藻演替至秋季的中肋骨条藻、冬季的中肋骨条藻和夜光藻,没有全年广布优势种;4季均出现的种类共有9种,其中硅藻8种,甲藻1种,各季节间共有种类数在13~31种,Jaccard种类相似性指数范围在0.12~0.35,季节更替明显。多样性指数和均匀度的变化范围分别为0.006~1.724和0.001~0.306,群落结构较脆弱。细胞密度在1.25×107~217.90×107 cells.m-3,夏季最高,春季次之,冬季最低,属季节单峰型变化,与一般亚热带春、秋季出现密度高峰不一致,这与深圳湾陆源营养物质的扰动有关,其无机氮和活性磷酸盐含量均劣于国家海水水质标准的四类水,因此,该海域水质营养类型属于亚热带富营养型。细胞密度与硅酸盐呈极显著的负相关,相关系数为-0.446(p〈0.01,n=36,双尾),与水温呈显著的正相关,相关系数为0.371(p〈0.05,n=36,双尾),与其他因子的相关性不明显。从优势种的种类数和多样性指数分析,深圳湾浮游植物的群落结构已趋于单一化,生态系统抗干扰能力极为脆弱。  相似文献   

14.
ABSTRACT

Long-term observations of the Xiamen Sea in Fujian Province were used to analyze variations in sea temperature, salinity, inorganic nitrogen (N), activated phosphate (P), and phytoplankton, as well as the features of red tides. Results showed that in recent decades, sea temperature and concentrations of N and P nutrients increased while salinity decreased attributed to climate warming, rainfall, and human sewage. In addition, reduction in the number of phytoplankton species and rising abundance of phytoplankton indicated that the structure of phytoplankton community presented a simplified and minimized trend which magnified the dominance of dominant phytoplankton species. Since 2000, red tides have occurred more frequently, and the eutrophic-type diatom species, Skeletonema costatum appears to be the predominant species. Data suggested that variations of N and P nutrients exert a potent and rapid influence on phytoplankton than sea temperature and ocean salinity.  相似文献   

15.
近年来,随着茂名经济迅猛发展及涉海工程建设,其近海海域遭到日益严重的污染,海域环境日趋恶化。为更好地了解茂名近岸海域中小型浮游动物群落结构及其与环境因子的关系,摸清中小型浮游动物的种类组成及其空间分布状况,保护近岸海域生物多样性,分别于2019年夏季(6月)和秋季(9月)对茂名近海浮游动物进行调查。调查共发现浮游动物52种,以桡足类为主(达到40种,占比76.92%)。秋季浮游动物平均丰度和平均生物量(分别为29.82 ind·m-3和282.08 mg·m-3)均高于夏季(分别为15.71×103 ind·m-3和110.23 mg·m-3)。短角长腹剑水蚤(Oithona brevicornis)、小长腹剑水蚤(Oithona nana)、强额拟哲水蚤(Paracalanus crassirostris)和小拟哲水蚤(Paracalanus parvus)为茂名近岸海域春、夏季优势种。夏季和秋季浮游植物物种多样性指数平均值分别为3.06和2.69,丰富度指数平均值分别为3.65和3.38,均匀度指数平均值分别为0.71和0.66。运用BIO-ENV方法分析了浮游动物群落结构以及与浮游植物丰度、环境因子之间的关系,结果表明浮游植物丰度、溶解氧、盐度、水温、水深是影响夏季浮游动物群落的主要环境因子,水深、浮游植物丰度是影响秋季浮游动物群落的主要环境因子。  相似文献   

16.
长江口浮游植物分布情况及与径流关系的初步探讨   总被引:3,自引:0,他引:3  
唐峰华  伍玉梅  樊伟  沈新强  王云龙 《生态环境》2010,19(12):2934-2940
利用2004—2008年5月(春季)和8月(夏季)共10个季度月航次调查资料,结合同时期长江口径流量的数据,研究了长江口海域浮游植物的分布特征、及其受长江径流影响的关系。分布情况的结果显示:同一年中,夏季调查航次鉴定的浮游植物种类数明显多于春季的种类数;浮游植物数量的基本趋势逐年增加,其中2008年调查航次的浮游植物数量急剧暴发;同时生物多样性指数呈逐年下降趋势,海域水质污染程度日趋严重。对浮游植物与长江口径流量的关系分析得到:拟合长江口5、8月平均径流量与对应调查航次的浮游植物数量呈正相关的幂函数关系,径流量与浮游植物多样度呈负相关的指数函数关系,径流量与浮游植物优势种数量百分比呈正相关的幂函数关系,关系都明显显著。其中长江口径流量的输入对优势种尤其是近岸低盐性的中肋骨条藻(Skeletonema costatum)分布有着决定性的影响;长江径流把大量的N、P等无机营养物质携带入海,导致长江口水域严重富营养化,造成长江口海域的局部区域频发赤潮。  相似文献   

17.
为了了解贵州高原水库蓝藻群落组成特征和微囊藻毒素分布,于2009年10月对贵州高原2座水库——万峰湖和百花湖采样调查。结果表明:万峰湖以蓝藻为主要优势藻,蓝藻中的拟柱孢藻(Cylindrospermopsis sp.)占绝对优势,浮游植物丰度在13.05×104~55.80×104 cells.L-1之间,蓝藻的丰度值占到了总量的82.55%,6个采样点中有3个(大坝、野鸭滩和革布)检出了微囊藻毒素MC-RR,且有1个点(革布)质量浓度超标,另外3个点(坝艾、坝达章和九里堡)未检出;百花湖以蓝藻、绿藻和硅藻共同构成优势藻,蓝藻中的假鱼腥藻(Pseudanabaena limnetica)是主要优势藻,浮游植物丰度在6.16×104~65.00×104 cells.L-1之间,蓝藻的丰度值在总体中所占比例为33.25%,3个采样点(大坝、岩脚寨和码头)均未检出微囊藻毒素。形成2个高原水库蓝藻群落结构和微囊藻毒素分布差异的原因可能是:2个水库中氮、磷营养盐水平不同引起浮游植物群落组成不同,进而导致了微囊藻毒素的分布出现差异。  相似文献   

18.
桑沟湾海域叶绿素a的时空分布特征及其影响因素研究   总被引:6,自引:0,他引:6  
2009年4月-2010年2月对山东荣成典型养殖海湾—桑沟湾海域水体中的叶绿素a(Chl-a)进行了6个航次的监测,分析该海区表底层海水中Chl-a的质量现状,探讨Chl-a在桑沟湾海区的时空分布特征,以及与水温和营养盐等主要环境因子的相关性。结果表明,桑沟湾海域表层海水Chl-a质量浓度范围为0.36~9.77μg L-1,平均值为2.17μg L-1;底层海水Chl-a质量浓度范围为0.40~7.46μg L-1,平均值为2.14μg L-1。Chl-a质量浓度的季节性变化呈现一定的模式,夏季〉秋季〉春季〉冬季。Chl-a的质量浓度在春季和冬季呈现由湾内向湾外递减的分布特征,而夏季和秋季则没有明显的分布规律。垂直分布上,夏季表层Chl-a质量浓度高于底层,冬季则是底层高于表层,春秋2季表底层垂直分布比较均匀。相关分析显示桑沟湾Chl-a与水温呈较显著正相关,但与营养盐溶解无机氮(DIN)不具显著意义的相关关系。总体看来,桑沟湾海域Chl-a的时空分布受养殖环境状况、水文环境及陆地径流和外源输入的共同影响,贝藻养殖活动及营养盐的陆源输入是影响Chl-a分布格局的重要因素。  相似文献   

19.
富营养化水体降磷对浮游植物群落结构特征的影响   总被引:1,自引:0,他引:1  
浮游植物是水生态系统中物质循环和能量流动的基础,作为初级生产者,浮游植物的群落结构直接影响着水生态系统的结构和功能。在水产养殖生产中,如何根据养殖生物对生活环境的需求开展精准培水、定向培水,培养养殖生物所需要的浮游植物,在维持养殖水域生态平衡的同时又能为养殖生物提供一定的饵料资源,这一直是摆在水产科技工作者面前的重要难题和研究热点。已有的资料大都是通过添加磷的方式研究磷改变对浮游植物生长的影响,而有关富营养化水体降磷对浮游植物群落结构影响的研究尚未见报道。为此,试验通过向取自富营养化湖泊的水体中加入磷去除剂,采用Pielou均匀度指数、Mcnaughton优势度指数和Shannon多样性指数,研究自然水体中的磷被降低后水体浮游植物群落结构的变化情况。结果表明,所取富营养化水体中共检出绿藻(Chlorophyta)、硅藻(Bacillariophyta)、蓝藻(Cyanophyta)、裸藻(Euglenophyta)、隐藻(Cryptophyta)、甲藻(Pyrrophyta)6门29种(包括变种和变型);其中绿藻、蓝藻、硅藻、隐藻、裸藻、甲藻分别有7、4、2、1、1种,分别占总种数的24.13%、13.79%、6.90%、3.45%、3.45%。富营养化水体降磷后,虽然试验组和对照组在浮游植物种类组成上没有差异,但浮游植物群落结构特征发生了很大变化,浮游植物数量明显降低,由13 238.8×104cells·L-1降低至3 997.5×104cells·L-1,下降了69.8%;浮游植物优势种从1门(蓝藻(Cyanophyta))6种增加到3门(绿藻(Chlorophyta)、硅藻(Bacillariophyta)、蓝藻(Cyanophyta))12种,优势度指数从97.29%降低至86.30%,优势种门数和优势种种数远远高于对照组,优势度明显低于对照组;同时,浮游植物多样性指数和均匀度分别从1.85和0.38升高至2.60和0.54,显示出试验组浮游植物多样性和均匀度优于对照组。研究表明富营养化水体降磷对浮游植物群落结构产生了明显影响,使群落结构处于更加复杂、完整和稳定的状态。  相似文献   

20.
大亚湾裸甲藻种群动态及其关键调控因子   总被引:2,自引:0,他引:2  
赖海燕  徐宁  段舜山 《生态环境》2011,20(3):505-510
2008年1—12月对大亚湾养殖海域裸甲藻种群动态和主要环境因子进行了周年调查。结果表明,大亚湾海域裸甲藻类群以直径约为16~22μm的小型裸甲藻(Gymnodinium sp.)为主,另外米氏凯伦藻(Karenia mikimotoi)、链状裸甲藻(Gymnodnium catenatum)和血红哈卡藻(Akashiwo sanguinea)也有少量出现。裸甲藻种群密度呈现出明显的季节性变化特征:5月出现裸甲藻密度高峰,全年最大密度达到903 cells.mL-1,秋冬季节密度最小。不同站位裸甲藻密度也具有明显的空间分布差异,养殖及近岸海域密度普遍高于外海对照区。相关性分析结果表明,裸甲藻密度的关键调控因子包括温度、化学需氧量(COD)、可溶性有机氮(DON)和尿素浓度。裸甲藻高密度、高频率出现的温度范围在24~26℃,DON和尿素的质量浓度范围分别为N 156.38~187μg·L-1和N 17.4~38.9μg·L-1。在温度适宜的条件下,尿素等有机氮含量的增加可能成为裸甲藻赤潮的触发因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号