首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989-2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.  相似文献   

2.
Bricker M  Maron J 《Ecology》2012,93(3):532-543
Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.  相似文献   

3.
Caplat P  Nathan R  Buckley YM 《Ecology》2012,93(2):368-377
Little is known about the relative importance of mechanistic drivers of plant spread, particularly when long-distance dispersal (LDD) events occur. Most methods to date approach LDD phenomenologically, and all mechanistic models, with one exception, have been implemented through simulation. Furthermore, the few recent mechanistically derived spread models have examined the relative role of different dispersal parameters using simulations, and a formal analytical approach has not yet been implemented. Here we incorporate an analytical mechanistic wind dispersal model (WALD) into a demographic matrix model within an analytical integrodifference equation spread model. We carry out analytical perturbation analysis on the combined model to determine the relative effects of dispersal and demographic traits and wind statistics on the spread of an invasive tree. Models are parameterized using data collected in situ and tested using independent data on historical spread. Predicted spread rates and direction match well the two historical phases of observed spread. Seed terminal velocity has the greatest potential influence on spread rate, and three wind properties (turbulence coefficient, mean horizontal wind speed, and standard deviation of vertical wind speed) are also important. Fecundity has marginal importance for spread rate, but juvenile survival and establishment are consistently important. This coupled empirical/theoretical framework enables prediction of plant spread rate and direction using fundamental dispersal and demographic parameters and identifies the traits and environmental conditions that facilitate spread. The development of an analytical perturbation analysis for a mechanistic spread model will enable multispecies comparative studies to be easily implemented in the future.  相似文献   

4.
Prospective elasticity analyses have been used to aid in the management of fished species and the conservation of endangered species. Elasticities were examined for deterministic size-based matrix models of red abalone, Haliotis rufescens, and white abalone, H. sorenseni, to evaluate which size classes influenced population growth (lambda) the most. In the red abalone matrix, growth transitions were determined from a tag recapture study and grouped into nine size classes. In the white abalone matrix, abalone growth was determined from a laboratory study and grouped into five size classes. Survivorship was estimated from tag recapture data for red abalone using a Jolly-Seber model with size as a covariate and used for both red and white abalone. Reproduction estimates for both models used averages of the number of mature eggs produced by female red and white abalone in each size class from four-year reproduction studies. Population growth rate (lambda) was set to 1.0, and the first-year survival (larval survival through to the first size class) was estimated by iteration. Survival elasticities were higher than fecundity elasticities in both the red and white matrix models. The sizes classes with the greatest survival elasticities, and therefore the most influence on population growth in the model, were the sublegal red abalone (150-178 mm) and the largest white abalone size class (140-175 mm). For red abalone, the existing minimum legal size (178 mm) protects the size class the model suggests is critical to population growth. Implementation of education programs for novice divers coupled with renewed enforcement may serve to minimize incidental mortality of the critical size class. For white abalone, conservation efforts directed at restoring adults may have more of an impact on population growth than efforts focusing on juveniles. Our work is an example of how prospective elasticity analyses of size-structured matrix models can be used to quantitatively evaluate research priorities, fishery management strategies, and conservation options.  相似文献   

5.
《Ecological modelling》2005,188(1):41-51
In plants that produce seeds with contrasting genetic background (selfed versus outcrossed), the question arises whether the ecological function of the two types of progeny differ. This paper addresses this issue for the ant-dispersed Calathea micans by introducing a novel application of the Neubert–Caswell model for analysis of wave speed for structured populations. Because dispersal as well as vital rates are structured, the model allows for distinct dispersal kernels for different types of progeny and thus permits comparisons of the sensitivity to changes in demographic and dispersal parameters of in situ population growth rate versus population spread across space. The study site was a lowland, evergreen tropical rain forest at La Selva Biological station, Costa Rica, where the species is commonly found throughout the forest. In C. micans, seeds produced by open flowers (potentially outcrossed) or by closed flowers (selfed) bear oily arils and are dispersed by ants. Five life-history stages were used to characterize the population: seedlings originating from seeds produced by open flowers, seedlings originating from seeds produced by closed flowers, juvenile vegetative plants, reproductive plants without new shoots and reproductive plants with new shoots. Demography varied seasonally. Transitions were estimated from marking and following the fate of plants (N = 400) in a natural population over a dry and a wet season. The population dynamics was described by a 10 × 10 matrix, with five life-history stages and two habitat states. The habitat states cycle repeatedly, dry–wet–dry–wet. To estimate dispersal kernels for each seed type, individual seeds (N = 225 and 306 seeds produced by open and closed flowers, respectively) were color-coded and placed in depots, allowing the ants to redistribute them. Five months later, seedlings with an attached seed coat bearing the intact color-coding, were surveyed around the depots. Radial distances and angles were recorded for each seedling (N = 67 and 81 seedlings arising from open and closed flowers, respectively). The results of the model give an asymptotic growth rate of 1.06 per season and an asymptotic rate of spread of 8.36 cm per season. There is a high correlation (r = 0.99) between elasticity of growth rate and elasticity of rate of spread of the population. Both rates are most sensitive to changes in stasis of juveniles during the dry season. However, most interesting is the analysis that revealed that population spread is more sensitive than in situ population growth to demographic rates of seedlings arising from open flowers. The analysis suggests a new way of thinking about ecological functions of multiple modes of reproduction.  相似文献   

6.
As population modeling is increasingly called upon to guide policy and management, it is important that we understand not only the central tendencies of our study systems, but the consequences of their variation in space and time as well. The invasive plant Alliaria petiolata (garlic mustard) is actively managed in the United States and is the focus of a developing biological control program. Two weevils (Coleoptera: Curculionidae: Ceutorhynchus) that reduce fecundity (C. alliariae) and rosette survival plus fecundity (C. scrobicollis) are under consideration for release pending host specificity testing. We used a demographic modeling approach to (1) quantify variability in A. petiolata growth and vital rates and (2) assess the potential for single- or multiple-agent biocontrol to suppress growth of 12 A. petiolata populations in Illinois and Michigan studied over three plant generations. We used perturbation analyses and simulation models with stochastic environments to estimate stochastic growth rates (lambda(S)) and predict the probability of successful management using either a single biocontrol agent or two agent species together. Not all populations exhibited invasive dynamics. Estimates of lambda(S) ranged from 0.78 to 2.21 across sites, while annual, deterministic growth (lambda) varied up to sevenfold within individual sites. Given our knowledge of the biocontrol agents, this analysis suggests that C. scrobicollis alone may control A. petiolata at up to 63% of our study sites where lambda >1, with the combination of both agents predicted to succeed at 88% of sites. Across sites and years, the elasticity rankings were dependent on lambda. Reductions of rosette survival, fecundity, or germination of new seeds are predicted to cause the greatest reduction of lambda in growing populations. In declining populations, transitions affecting seed bank survival have the greatest effect on lambda. This contrasts with past analyses that varied parameters individually in an otherwise constant matrix, which may yield unrealistic predictions by decoupling natural parameter covariances. Overall, comparisons of stochastic and deterministic growth rates illustrate how analyses of individual populations or years could misguide management or fail to characterize complex traits such as invasiveness that emerge as attributes of populations rather than species.  相似文献   

7.
Loayza AP  Knight T 《Ecology》2010,91(9):2684-2695
We examined the effect of seed dispersal by Purplish Jays (Cyanocorax cyanomelas; pulp consumers) and the Chestnut-eared Ara?ari (Pteroglossus castanotis; "legitimate" seed dispersers) on population growth of the small tree Guettarda viburnoides (Rubiaceae) in northeastern Bolivian savannas. Because each bird species differs with respect to feeding and post-feeding behavior, we hypothesized that seed dispersal by each species will contribute differently to the rate of increase of G. viburnoides, but that seed dispersal by either species will increase population growth when compared to a scenario with no seed dispersal. To examine the effects of individual dispersers on the future population size of G. viburnoides, we projected population growth rate using demographic models for G. viburnoides that explicitly incorporate data on quantitative and qualitative aspects of seed dispersal by each frugivore species. Our model suggests that seed dispersal by C. cyanomelas leads to positive population growth of G. viburnoides, whereas seed dispersal by P. castanotis has a detrimental effect on the population growth of this species. To our knowledge, this is the first study to report negative effects of a "legitimate" seed disperser on the population dynamics of the plant it consumes. Our results stress the importance of incorporating frugivore effects into population projection matrices, to allow a comprehensive analysis of the effectiveness of different dispersers for plant population dynamics.  相似文献   

8.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

9.
This study quantitatively clarifies the life history of a shrub, Sambucus racemosa ssp. sieboldiana, in an old-growth forest, the Ogawa Forest Reserve, Japan, by a demographic approach using a projection matrix model that incorporates interactions between demographic parameters and canopy height dynamics. S. racemosa is a common deciduous shrub in central Japan and is known to grow predominantly at forest edges or roadsides. This indicates that it is a highly light-demanding species, and occurrence in gaps in old-growth stands suggests its "fugitive," gap-dependent life history in old-growth forests. We found that one distinctive feature of this species was that its seedlings can survive well in shaded conditions by alternating stems every year like perennial herb species. Matrix model analyses demonstrated that S. racemosa can continuously regenerate under the present disturbance regime of this forest and is highly adaptable to the structural dynamics of the old-growth forest. The maturity of S. racemosa shrubs depends on their size, and nearly all (>90%) of the mature (reproducing) individuals were found in gaps or near gaps. But wide seed dispersal by birds and the ability to form both seed banks and seedling banks, the latter of which has been regarded as a common characteristic of shade-tolerant climax species, probably increase the species' chances to encounter canopy gaps. Dynamic-canopied matrix models showed that the greatest elasticity is with shaded seedling survival. The frequent stem alternation of shaded seedlings often makes the growth rate negative, but the survival rate of seedlings in low light awaiting new gap creation is remarkably high (0.93 yr(-1)). The lower survival rate of the larger individuals and smaller minimum size to start reproduction than other canopy or subcanopy shade-tolerant species indicate that S. racemosa has the potential to reproduce before the closure of the encountered gaps and to complete its life history rapidly.  相似文献   

10.
Angert AL 《Ecology》2006,87(8):2014-2025
Every species occupies a limited geographic area, but how spatiotemporal environmental variation affects individual and population fitness to create range limits is not well understood. Because range boundaries arise where, on average, populations are more likely to go extinct than to persist, range limits are an inherently population-level problem for which a demographic framework is useful. In this study, I compare demographic parameters and population dynamics between central and marginal populations of monkeyflowers, Mimulus cardinalis and M. lewisii, along an elevation gradient spanning both species' ranges. Central and marginal populations of both species differed in survival and fecundity. For M. lewisii, these components of fitness were higher in central than in marginal populations, but for M. cardinalis the converse was true. To assess spatiotemporal variation in population dynamics, I used transition matrix models to estimate asymptotic population growth rates (lambda) and found that population growth rates of M. lewisii were highest at the range center and reduced at the range margin. Population growth rates of M. cardinalis were highest at the range margin and greatly reduced at the range center. Life table response analysis decomposed spatiotemporal variation in lambda into contributions from each transition between life stages, finding that transitions from large nonreproductive and reproductive plants to the seed class and stasis in the reproductive class made the largest contributions to spatial differences in lambda. These transitions had only low to moderate sensitivities, indicating that differences in projected population growth rates resulted mainly from observed differences in transition matrix parameters and their underlying vital rates.  相似文献   

11.
Connolly SR  Baird AH 《Ecology》2010,91(12):3572-3583
Dispersal influences ecological dynamics, evolution, biogeography, and biodiversity conservation, but models of larval dispersal in marine organisms make simplifying assumptions that are likely to approximate poorly the temporal dynamics of larval survival and capacity for settlement. In particular, larval mortality rates are typically assumed to be constant throughout larval life; and all larvae are frequently assumed to acquire and lose competence at the same time. To improve upon these assumptions, we here develop simple models of dispersal potential that incorporate rates of mortality, and acquisition and loss of settlement competence. We fit these models to empirical competence and survival data for five scleractinian coral species, to test the models' ability to characterize empirical survival and competence patterns, and to estimate the dispersal potential implied by those patterns. The models fit the data well, incorporating qualitative features of competence and survival that traditional approaches to modeling dispersal do not, with important implications for dispersal potential. Most notably, there was high within-cohort variation in the duration of the competent period in all species, and this variation increases both self-recruitment and long-distance dispersal compared with models assuming a fixed competent period. These findings help to explain the seeming paradox of high genetic population structure, coupled with large geographic range size, observed in many coral species. More broadly, our approach offers a way to parsimoniously account for variation in competence dynamics in dispersal models, a phenomenon that our results suggest has important effects on patterns of connectivity in marine metapopulations.  相似文献   

12.
Range expansion by native and exotic species will continue to be a major component of global change. Anticipating the potential effects of changes in species distributions requires models capable of forecasting population spread across realistic, heterogeneous landscapes and subject to spatiotemporal variability in habitat suitability. Several decades of theory and model development, as well as increased computing power and availability of fine-resolution GIS data, now make such models possible. Still unanswered, however, is the question of how well this new generation of dynamic models will anticipate range expansion. Here we develop a spatially explicit stochastic model that combines dynamic dispersal and population processes with fine-resolution maps characterizing spatiotemporal heterogeneity in climate and habitat to model range expansion of the hemlock woolly adelgid (HWA; Adelges tsugae). We parameterize this model using multiyear data sets describing population and dispersal dynamics of HWA and apply it to eastern North America over a 57-year period (1951-2008). To evaluate the model, the observed pattern of spread of HWA during this same period was compared to model predictions. Our model predicts considerable heterogeneity in the risk of HWA invasion across space and through time, and it suggests that spatiotemporal variation in winter temperature, rather than hemlock abundance, exerts a primary control on the spread of HWA. Although the simulations generally matched the observed current extent of the invasion of HWA and patterns of anisotropic spread, it did not correctly predict when HWA was observed to arrive in different geographic regions. We attribute differences between the modeled and observed dynamics to an inability to capture the timing and direction of long-distance dispersal events that substantially affected the ensuing pattern of spread.  相似文献   

13.
The estimation of the dispersal kernel for the seedling and sapling stages of the recruitment process was made possible through the application of inverse modeling to dispersal data. This method uses the spatial coordinates of adult trees and the counts of seedlings (or saplings) in small quadrats to estimate the dispersal kernel. The unknown number of recruits produced by an adult tree (the fecundity) is estimated - simultaneously with the dispersal kernel - via an allometric linear model relating the unknown quantity with a (easily) measured characteristic of the adult tree (usually the basal area). However, the allometric relation between tree size and reproductive success in the sapling (or seedling) stage may not be strong enough when numerous, well-documented, post-dispersal processes (such as safe-site limitation for recruitment) cause large post-dispersal seedling mortality, which is usually unrelated to the size of the tree that dispersed them. In this paper we hypothesize that when tree size and reproductive success in the seedling/sapling stage are not well correlated then the use of allometry in inverse modeling is counter-productive and may lead to poor model fits. For these special cases we suggest using a new model for effective dispersal that we term the unrestricted fecundity (UF) model that, contrary to allometric models, makes no assumptions on the fecundities; instead they are allowed to vary freely from one tree to another and even to be zero for trees that are reproductively inactive. Based on this model, we examine the hypothesis that when tree size and reproductive success are weakly correlated and the fecundities are estimated independently of tree size the goodness-of-fit and the ecological meaning of dispersal models (in the seedling or sapling stage) may be enhanced. Parameters of the UF model are estimated through the EM algorithm and their standard errors are approximated via the observed information matrix. We fit the UF model to a dataset from an expanding European beech population of central Spain as well as to a set of simulated dispersal data were the correlation between reproductive success and tree size was moderate. In comparisons with a simple allometric model, the UF model fitted the data better and the parameter estimates were less biased. We suggest using this new approach for modeling dispersal in the seedling and sapling stages when tree size (or other adult-specific covariates) is not deemed to be in strong relation to the reproductive success of adults. Models that use covariates for modeling the fecundity of adults should be preferred when reproductive success and tree size guard a strong relationship.  相似文献   

14.
Urban areas often contain sizeable pockets of degraded land, such as inactive landfills, that could be reclaimed as wildlife habitat and as connecting links to enhance remnant natural areas. In the northeastern U.S., many such lands fail to undergo natural succession to woodland, instead retaining a weedy, herbaceous cover for many years. We hypothesize that seed dispersal is a limiting factor, and that a form of secondary succession could be stimulated by introducing clusters of trees and shrubs to attract avian seed dispersers. As a direct test, we censused a 1.5-ha experimental plantation on the Fresh Kills Landfill (Staten Island, New York) one year after installation, in search of evidence that the plantation was spreading or increasing in diversity. The 17 planted species, many from coastal scrub forests native to this region, were surviving well but contributed almost no seedlings to the area, in part because only 20% of the installed trees or shrubs were reproductive. Of the 1079 woody seedlings found, 95% came from sources outside the plantation; most (71%) were from fleshy-fruited, bird-dispersed plants from nearby woodland fringes. Although the restoration planting itself had not begun to produce seedlings, it did function as a site for attracting dispersers, who enriched the young community with 20 new species. One-fourth of all new recruits were from nine additional wind-dispersed species. Locations with a high ratio of trees to shrubs had proportionately more recruits, indicating that plant size contributed to disperser attraction. The density of new recruits of each species was dependent on distance from the nearest potential seed source. Introducing native species with the capacity to attract avian dispersers may be the key to success of many restoration programs.  相似文献   

15.
Thomson DM 《Ecology》2007,88(12):3126-3134
Models of source-sink and other spatial patch dynamics have generated a number of ideas and predictions about species range expansion, the evolution of local adaptation, and the factors influencing population persistence, but relatively few empirical studies have applied these ideas due to the difficulty of measuring both patch-specific demography and movement rates. In this study, I used a combination of mark-recapture experiments, model fitting, and demographic approaches to ask how habitat-specific differences in population growth and dispersal affect spread of the invasive grass Aegilops triuncialis into serpentine environments. A. triuncialis germinated at lower rates but exhibited equivalent survival and greater growth in edge (extreme serpentine) than in core populations, even accounting for density differences between habitats. Estimated growth rates (lambda) for four of five edge subpopulations were strongly positive, ranging from lambda = 1.32 to 2.09 without propagule input from adjacent habitat. Local dispersal was best described by an exponential kernel, with a mean dispersal distance about twice as long on the edge (0.24-0.40 m) as in the core (0.18 m). Twenty-five percent of marked spikes in the edge were not relocated within the patch, suggesting greater rates of either seed predation or long-distance dispersal that reduced population growth. These results suggest that A. triuncialis can successfully spread into extreme serpentine habitats without sustained propagule input from adjacent populations. Further, asymmetric dispersal that may be both habitat- and density-dependent could slow growth rates on the edge. This pattern may also increase the importance of harsh edge patches as a source of long-distance dispersers.  相似文献   

16.
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.  相似文献   

17.
The loss of large animals due to overhunting and habitat loss potentially affects tropical tree populations and carbon cycling. Trees reliant on large-bodied seed dispersers are thought to be particularly negatively affected by defaunation. But besides seed dispersal, defaunation can also increase or decrease seed predation. It remains unclear how these different defaunation effects on early life stages ultimately affect tree population dynamics. We reviewed the literature on how tropical animal loss affects different plant life stages, and we conducted a meta-analysis of how defaunation affects seed predation. We used this information to parameterize models that altered matrix projection models from a suite of tree species to simulate defaunation-caused changes in seed dispersal and predation. We assessed how applying these defaunation effects affected population growth rates. On average, population-level effects of defaunation were negligible, suggesting that defaunation may not cause the massive reductions in forest carbon storage that have been predicted. In contrast to previous hypotheses, we did not detect an effect of seed size on changes in seed predation rates. The change in seed predation did not differ significantly between exclosure experiments and observational studies, although the results of observational studies were far more variable. Although defaunation surely affects certain tree taxa, species that benefit or are harmed by it and net changes in forest carbon storage cannot currently be predicted based on available data. Further research on how factors such as seed predation vary across tree species and defaunation scenarios is necessary for understanding cascading changes in species composition and diversity.  相似文献   

18.
Conservation of Fragmented Populations   总被引:38,自引:0,他引:38  
In this paper we argue that landscape spatial structure is of central importance in understanding the effects of fragmentation on population survival. Landscape spatial structure is the spatial relationships among habitat patches and the matrix in which they are embedded. Many general models of subdivided populations make the assumptions that (1) all habitat patches are equivalent in size and quality and (2) all local populations (in the patches) are equally accessible by dispersers. Models that gloss over spatial details of landscape structure can be useful for theoretical developments but will almost always be misleading when applied to real-world conservation problems. We show that local extinctions of fragmented populations are common. From this it follows that recolonization of local extinctions is critical for regional survival of fragmented populations. The probability of recolonization depends on (1) spatial relationships among landscape elements used by the population, including habitat patches for breeding and elements of the inter-patch matrix through which dispersers move, (2) dispersal characteristics of the organism of interest, and (3) temporal changes in the landscape structure. For endangered species, which are typically restricted in their dispersal range and in the kinds of habitat through which they can disperse, these factors are of primary importance and must be explicitly considered in management decisions.  相似文献   

19.
Capturing the spread of biological invasions in heterogeneous landscapes is a complex modelling task where information on both dispersal and population dynamics needs to be integrated. Spatial stochastic simulation and phenology models have rarely been combined to assist in the study of human-assisted long-distance dispersal events.Here we develop a process-based spatially explicit landscape-extent simulation model that considers the spread and detection of invasive insects. Natural and human-assisted dispersal mechanisms are modelled with an individual-based approach using negative exponential and negative power law dispersal kernels and gravity models. The model incorporates a phenology sub-model that uses daily temperature grids for the prediction and timing of the population dynamics in each habitat patch. The model was applied to the study of the invasion by the important maize pest western corn rootworm (WCR) Diabrotica virgifera ssp. virgifera in Europe. We parameterized and validated the model using maximum likelihood and simulation methods from the historical invasion of WCR in Austria.WCR was found to follow stratified dispersal where international transport networks in the Danube basin played a key role in the occurrence of long-distance dispersal events. Detection measures were found to be effective and altitude had a significant effect on limiting the spread of WCR. Spatial stochastic simulation combined with phenology models, maximum likelihood methods and predicted versus observed regression showed a high degree of flexibility that captured the salient features of WCR spread in Austria. This modelling approach is useful because it allows to fully exploit and the often limited and heterogeneous information available regarding the population dynamics and dispersal of alien invasive insects.  相似文献   

20.
Models can be used to direct the management of population spread for the control of invasives or to encourage species of conservation value. Analytical models are attractive because of their theoretical basis and limited data requirements, but there is concern that their simplicity may limit their practical utility. We address the applied use of simple models in a study of a declining annual herb, Rhinanthus minor. We parameterized a population-spread model using field data on demography and dispersal for four management systems: grazed only (GR), hay-cut once (H1), hay-cut twice (H2), and hay-cut with autumn grazing (HG). Within a replicated experiment we measured spread rates of introduced R. minor populations over eight years. The modeled and measured spread rates were very similar in terms of both patterns of management effects and absolute values, so that in both cases HG > H2, H1 > GR. The treatments affected both dispersal and demography (establishment and survival) and so we used decomposition approaches to analyze the major causes of differences in population spread. Increased dispersal under hay-cutting was more important than demographic changes and accounted for approximately 70% of the differences in spread rate between the hay-cut and grazed-only treatments. Furthermore, management effects on the tail of the dispersal curve were by far the most critical in governing spread. This study suggests that simple models can be used to inform practical conservation management, and we demonstrate straightforward uses of our model to predict the impacts of different management strategies. While simple models can give accurate projections, we emphasize that they must be parameterized with high-quality data gathered at the appropriate spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号