首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生态风险评价的目的是保护生态系统功能的完整性、稳定性和持久性,为环境风险管理提供理论依据。然而,目前常见的用于保护生物的化学污染物浓度阈值大多是以个体水平的毒性试验结果为基础,忽略了物种在时间和空间相互作用等因素,不能够完全保护生态环境安全和生态系统功能的延续性。本文从生态风险评价的概念、目的和意义引出种群水平生态风险评价在环境管理应用的重要性,综述了种群水平生态风险评价的科学问题(如密度依赖、遗传变异和空间结构等),归纳了种群水平风险评价主要模型方法及其应用(如Euler-Lotka方程、预测矩阵、个体模型、空间模型和动态能量预算模型等),列举了各国现有法律法规中关于种群水平生态风险评价的规定,以期为种群水平生态风险评价方法研究及在环境管理中的应用提供有益借鉴。  相似文献   

2.
Lindén A  Mäntyniemi S 《Ecology》2011,92(7):1414-1421
A Poisson process is a commonly used starting point for modeling stochastic variation of ecological count data around a theoretical expectation. However, data typically show more variation than implied by the Poisson distribution. Such overdispersion is often accounted for by using models with different assumptions about how the variance changes with the expectation. The choice of these assumptions can naturally have apparent consequences for statistical inference. We propose a parameterization of the negative binomial distribution, where two overdispersion parameters are introduced to allow for various quadratic mean-variance relationships, including the ones assumed in the most commonly used approaches. Using bird migration as an example, we present hypothetical scenarios on how overdispersion can arise due to sampling, flocking behavior or aggregation, environmental variability, or combinations of these factors. For all considered scenarios, mean-variance relationships can be appropriately described by the negative binomial distribution with two overdispersion parameters. To illustrate, we apply the model to empirical migration data with a high level of overdispersion, gaining clearly different model fits with different assumptions about mean-variance relationships. The proposed framework can be a useful approximation for modeling marginal distributions of independent count data in likelihood-based analyses.  相似文献   

3.
《Ecological modelling》1999,114(2-3):137-173
Two-dimensional, 31-segment, 61-channel hydrodynamic and water quality models of Lake Marion (surface area 330.7 km2; volume 1548.3×106 m3) were developed using the WASP5 modeling system. Field data from 1985 to 1990 were used to parameterize the models. Phytoplankton kinetic rates and constants were obtained from a related in situ study; others from modeling literature. The hydrodynamic model was calibrated to estimates of daily lake volume; the water quality model was calibrated for ammonia, nitrate, ortho-phosphate, dissolved oxygen, chlorophyll-a, biochemical oxygen demand, organic nitrogen, and organic phosphorus. Water quality calibration suggested the model characterized phytoplankton and nutrient dynamics quite well. The model was validated (Kolmogorov–Smirnov two-sample goodness-of-fit test at P<0.05) by reparameterizing the nutrient loading functions using an independent set of field data. The models identified several factors that may contribute to the spatial variability previously reported from other research in the reservoir, despite the superficial absence of complex structure. Sensitivity analysis of the phytoplankton kinetic rates suggest that study site-specific estimates were important for obtaining model fit to field data. Sediment sources of ammonia (10–60 mg m−2 day−1) and phosphate (1–6 mg m−2 day−1) were important to achieve model calibration, especially during periods of high temperatures and low dissolved oxygen. This sediment flux accounted for 78% (nitrogen) and 50% (phosphorus) of the annual load. Spatial and temporal variability in the lake, reflected in the calibrated and validated models, suggest that ecological factors that influence phytoplankton productivity and nutrient dynamics are different in various parts of the lake. The WASP5 model as implemented here does not fully accommodate the ecological variability in Lake Marion due to model constraints on the specification of rate constants. This level of spatial detail may not be appropriate for an operational reservoir model, but as a research tool the models are both versatile and useful.  相似文献   

4.
Miller DA 《Ecology》2012,93(5):1204-1213
Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.  相似文献   

5.
Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.  相似文献   

6.
Environmental pollution of urban areas is one of key factors that state authorities and local agencies have to consider in the decision-making process. To find a compromise among many criteria, spatial analysis extended by geostatistical methods and dynamic models has to be carried out. In this case, spatial analysis includes processing of a wide range of air, water and soil pollution data and possibly noise assessment and waste management data. Other spatial inputs consist of data from remote sensing and GPS field measurements. Integration and spatial data management are carried out within the framework of a geographic information system (GIS). From a modeling point of view, GIS is used mainly for the preprocessing and postprocessing of data to be displayed in digital map layers and visualized in 3D scenes. Moreover, for preprocessing and postprocessing, deterministic and geostatistical methods (IDW, ordinary kriging) are used for spatial interpolation; geoprocessing and raster algebra are used in multi-criteria evaluation and risk assessment methods. GIS is also used as a platform for spatio-temporal analyses or for building relationships between the GIS database and stand-alone modeling tools. A case study is presented illustrating the application of spatial analysis to the urban areas of Prague. This involved incorporating environmental data from monitoring networks and field measurements into digital map layers. Extra data inputs were used to represent the 3D concentration fields of air pollutants (ozone, NO2) measured by differential absorption LIDAR. ArcGIS was used to provide spatial data management and analysis, extended by modeling tools developed internally in the ArcObjects environment and external modules developed with MapObjects. Ordinary kriging methods were employed to predict ozone concentrations in selected 3D locations together with estimates of variability. Higher ozone concentrations were found above crossroads with their heavy traffic than above the surrounding areas. Ozone concentrations also varied with height above the digital elevation model. Processed data, spatial analysis and models are integrated within the framework of the GIS project, providing an approach that state and local authorities can use to address environmental protection issues.  相似文献   

7.
In this article, we describe a parallel agent-based model of spatial opinion diffusion that is driven by graphics processing units (GPUs). Modeling opinion exchange and diffusion across landscapes often involves the simulation of large numbers of geographically located individual decision-makers and a massive number of individual-level interactions. This simulation requires substantial computational power. GPU-enabled computing resources provide a massively parallel processing platform based on a fine-grained shared memory paradigm. This massively parallel processing platform holds considerable promise for meeting the computing requirement of agent-based models of spatial problems. In this article, we focus on the parallelization of an agent-based spatial opinion model using GPU technologies. We discussed key algorithms designed for parallel agent-based opinion modeling: including domain decomposition and mutual exclusion. Experiments conducted to examine computing performance show that GPUs provide a computationally efficient alternative to traditional parallel computing architectures and substantially accelerate agent-based models of large-scale opinion exchange among individual decision makers.  相似文献   

8.
Testing the Generality of Bird-Habitat Models   总被引:18,自引:0,他引:18  
Bird-habitat models are frequently used as predictive modeling tools—for example, to predict how a species will respond to habitat modifications. We investigated the generality of the predictions from this type of model. Multivariate models were developed for Golden Eagle (Aquila chrysaetos), Raven (Corvus corax), and Buzzard (Buteo buteo) living in northwest Scotland. Data were obtained for all habitat and nest locations within an area of 2349 km2. This assemblage of species is relatively static with respect to both occupancy and spatial positioning. The area was split into five geographic subregions: two on the mainland and three on the adjacent Island of Mull, which has one of United Kingdom's richest raptor fauna assemblages. Because data were collected for all nest locations and habitats, it was possible to build models that did not incorporate sampling error. A range of predictive models was developed using discriminant analysis and logistic regression. The models differed with respect to the geographical origin of the data used for model development. The predictive success of these models was then assessed by applying them to validation data. The models showed a wide range of predictive success, ranging from only 6% of nest sites correctly predicted to 100% correctly predicted. Model validation techniques were used to ensure that the models' predictions were not statistical artefacts. The variability in prediction success seemed to result from methodological and ecological processes, including the data recording scheme and interregional differences in nesting habitat. The results from this study suggest that conservation biologists must be very careful about making predictions from such studies because we may be working with systems that are inherently unpredictable.  相似文献   

9.
10.

Background

Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level.

Results

We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data.

Conclusion

The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.
  相似文献   

11.
Graphical models provide an important tool for facilitating communication between scientists, decision-makers, and statisticians—many complicated ecological processes can be described in terms of “box-and-arrow” conceptual diagrams (e.g., Shipley in Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inferences, Cambridge Universtiy Press, Cambridge, 2000; Clark and Gelfand TRENDS in Ecology and Evolution 21:375–380, 2006). In particular, problems in landscape ecology often involve modeling relationships among multiple physical and/or biological variables that may operate on differing spatial scales (e.g., Rossi et al. in Ecol Monographs 62:277–314, 1992; Legendre et al. in Ecography 25:601–615, 2002; Overmars et al. in Ecol Model 164:257–270, 2003; Brown and Spector in J Appl Ecol 45:1639–1648, 2008; Koniak and Noy-Meir in Ecol Model 220:1148–1158, 2008). These problems are inherently multivariate, though researchers commonly rely on univariate methods, such as spatial regression models, to address them. In this paper, we introduce a multivariate method—graphical spatial models—that extends path analysis to incorporate spatial autocorrelation in one or more variables in a directed graph. We show how both exogenous and endogenous ecological processes as defined by Legendre et al. (Ecography 25:601–615, 2002) and Lichstein et al. (Ecol Monographs 72:445–463, 2002) can be represented in a graph. Most importantly, we show how to translate graphs representing these ecological processes into statistically estimable models. We motivate our theoretical results using an example of stream health data from the Willamette Valley, Oregon. For these data we are interested in the spatial pattern within both riparian land use and an index of stream health, and whether there is an association between land use and stream health, after accounting for these spatial patterns. We use a graphical spatial model to address these ecological questions simultaneously. We find that the health of a stream decreases as the percent of developed land within a 120-m riparian buffer increases; interestingly, there is only evidence of spatial pattern within land use.  相似文献   

12.
Many different spatio-temporal individual-based models (IBM) for forests have been developed for studying the development of trees in space and time. Such models typically depend on various numerical parameters that represent the ecological processes of growth (G), inter-plant competition (C) and birth-and-death (B&D; also called regeneration and mortality). Until now little work has been done to systematically trace the influence of these processes and their model parameters on the spatial structure of forest ecosystems.This paper attempts to fill this gap by addressing an important aspect of forest structure, spatial variability, characterised by the mark variogram as a summary characteristic. The model used was inspired by components of various well-established IBMs including a shot-noise competition field. Time series data from monospecies forests in three different countries of the northern hemisphere provided ecological reference scenarios. Though a case study, the paper's methodology is rather general and can be applied to any model and forest ecosystem.Methods of sensitivity analysis revealed that only a small number of model parameters is crucial for forming spatial variability. Particularly important is the range of competition between trees; with increasing range the variability increases. Growth processes have considerable importance particularly with short observation periods and in young forests, whereas mortality processes become more influential in the long-term. Naturally, these statements depend upon the initial structure and on the length of the observation period.  相似文献   

13.
Should conservation organizations focus on protecting habitats that are at imminent risk of being converted but are expensive or more remote areas that are less immediately threatened but where a large amount of land can be set aside? Variants of this trade‐off commonly arise in spatial planning. I used models of land‐use change near a deforestation frontier to examine this trade‐off. The optimal choice of where to protect was determined by how decisions taken today accounted for ecological benefits and economic costs of conservation actions that would occur sometime in the future. I used an ecological and economic discount rate to weight these benefits and costs. A large economic discount rate favored protecting more remote areas, whereas a large, positive ecological discount rate favored protecting habitat near the current deforestation frontier. The decision over where to protect was also affected by the influence economic factors had on landowners' decisions, the rate of technological change, and ecological heterogeneity of the landscape. How benefits and costs through time are accounted for warrants careful consideration when specifying conservation objectives. It may provide a niche axis along which conservation organizations differentiate themselves when competing for donor funding or other support.  相似文献   

14.
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest.  相似文献   

15.
Lele SR 《Ecology》2006,87(1):189-202
It is well known that sampling variability, if not properly taken into account, affects various ecologically important analyses. Statistical inference for stochastic population dynamics models is difficult when, in addition to the process error, there is also sampling error. The standard maximum-likelihood approach suffers from large computational burden. In this paper, I discuss an application of the composite-likelihood method for estimation of the parameters of the Gompertz model in the presence of sampling variability. The main advantage of the method of composite likelihood is that it reduces the computational burden substantially with little loss of statistical efficiency. Missing observations are a common problem with many ecological time series. The method of composite likelihood can accommodate missing observations in a straightforward fashion. Environmental conditions also affect the parameters of stochastic population dynamics models. This method is shown to handle such nonstationary population dynamics processes as well. Many ecological time series are short, and statistical inferences based on such short time series tend to be less precise. However, spatial replications of short time series provide an opportunity to increase the effective sample size. Application of likelihood-based methods for spatial time-series data for population dynamics models is computationally prohibitive. The method of composite likelihood is shown to have significantly less computational burden, making it possible to analyze large spatial time-series data. After discussing the methodology in general terms, I illustrate its use by analyzing a time series of counts of American Redstart (Setophaga ruticilla) from the Breeding Bird Survey data, San Joaquin kit fox (Vulpes macrotis mutica) population abundance data, and spatial time series of Bull trout (Salvelinus confluentus) redds count data.  相似文献   

16.
For spatial linear regression, the traditional approach to capture spatial dependence is to use a parametric linear mixed-effects model. Spline surfaces can be used as an alternative to capture spatial variability, giving rise to a semiparametric method that does not require the specification of a parametric covariance structure. The spline component in such a semiparametric method, however, impacts the estimation of the regression coefficients. In this paper, we investigate such an impact in spatial linear regression with spline-based spatial effects. Statistical properties of the regression coefficient estimators are established under the model assumptions of the traditional spatial linear regression. Further, we examine the empirical properties of the regression coefficient estimators under spatial confounding via a simulation study. A data example in precision agriculture research regarding soybean yield in relation to field conditions is presented for illustration.  相似文献   

17.
Crown fire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (CFD) and can be used to model fire in heterogeneous crown fuels. However, the potential impacts of variability in crown fuels on fire behavior have not yet been explored. In this study we describe a new model, FUEL3D, which incorporates the pipe model theory (PMT) and a simple 3D recursive branching approach to model the distribution of fuel within individual tree crowns. FUEL3D uses forest inventory data as inputs, and stochastically retains geometric variability observed in field data. We investigate the effects of crown fuel heterogeneity on fire behavior with a CFD fire model by simulating fire under a homogeneous tree crown and a heterogeneous tree crown modeled with FUEL3D, using two different levels of surface fire intensity. Model output is used to estimate the probability of tree mortality, linking fire behavior and fire effects at the scale of an individual tree. We discovered that variability within a tree crown altered the timing, magnitude and dynamics of how fire burned through the crown; effects varied with surface fire intensity. In the lower surface fire intensity case, the heterogeneous tree crown barely ignited and would likely survive, while the homogeneous tree had nearly 80% fuel consumption and an order of magnitude difference in total net radiative heat transfer. In the higher surface fire intensity case, both cases burned readily. Differences for the homogeneous tree between the two surface fire intensity cases were minimal but were dramatic for the heterogeneous tree. These results suggest that heterogeneity within the crown causes more conditional, threshold-like interactions with fire. We conclude with discussion of implications for fire behavior modeling and fire ecology.  相似文献   

18.
Few numerical simulations have attempted to include a high degree of biological detail for several trophic levels. Typically, in planktonic ecosystem models, if the dynamics of nutrients, phytoplankton and herbivorous zooplankton are formulated with ecological complexity, then carnivores are ignored, forced or modeled in an extremely simplified manner. Extensive mechanistic detail for important carnivores is difficult to represent because reliable and relevant ecological data are rarely available for appropriate species and local populations. Further, the wide temporal and spatial differences between life histories of lower plankton and carnivores may be technically difficult to model.In Narragansett Bay, Rhode Island, the ctenophore Mnemiopsis leidyi is an important carnivore to which these objections do not apply. A detailed carbon-based simulation model of this population of ctenophores was developed independently from an ecosystem model of Narragansett Bay which included detailed interactions between phytoplankton, primarily herbivorous zooplankton and nutrients. The interfacing of these two models without changing any of the formulations or values of the coefficients provided a test of the commonly used practice of forcing certain components. Both models were originally constructed with the biomass of a critical compartment forced according to observed data; in the plankton model, ctenophores were forced, and in the ctenophore model, zooplankton were forced.Predicted biomasses for zooplankton and ctenophores in the combined model were similar to the results of the two parent models, but improved relative to the actual field observations. From the findings it appears that the strategy of forcing is valid provided the forced patterns are appropriate and reasonable.  相似文献   

19.
Diez JM  Pulliam HR 《Ecology》2007,88(12):3144-3152
Abiotic and biotic processes operate at multiple spatial and temporal scales to shape many ecological processes, including species distributions and demography. Current debate about the relative roles of niche-based and stochastic processes in shaping species distributions and community composition reflects, in part, the challenge of understanding how these processes interact across scales. Traditional statistical models that ignore autocorrelation and spatial hierarchies can result in misidentification of important ecological covariates. Here, we demonstrate the utility of a hierarchical modeling framework for testing hypotheses about the importance of abiotic factors at different spatial scales and local spatial autocorrelation for shaping species distributions and abundances. For the two orchid species studied, understory light availability and soil moisture helped to explain patterns of presence and abundance at a microsite scale (<4 m2), while soil organic content was important at a population scale (<400 m2). The inclusion of spatial autocorrelation is shown to alter the magnitude and certainty of estimated relationships between abundance and abiotic variables, and we suggest that such analysis be used more often to explore the relationships between species life histories and distributions. The hierarchical modeling framework is shown to have great potential for elucidating ecological relationships involving abiotic and biotic processes simultaneously at multiple scales.  相似文献   

20.
Networks – structured graphs consisting of sets of nodes connected by edges – provide a rich framework for data visualisation and exploratory analyses. Although rarely used for the visualisation of ecological data, networks are well suited to this purpose, including data that one might not normally think of as a network. We present a simple method for transforming a data matrix into network format, and show how this can be used as the basis for interactive exploratory analyses of ecological data.The method is demonstrated using a database of marine zooplankton samples acquired in the Southern Ocean. The network analyses revealed zooplankton community structures that are in good agreement with previously published results. Variations in community structure were observed to be related to the temporal and spatial pattern of sampling, as well as to physical environmental factors such as sea ice cover. The analyses also revealed a number of errors in the data, including taxon identification errors and instrument failures.The method allows the analyst to generate networks from different combinations of variables in the data set, and to examine the effects of varying parameters such as the scales of spatial, temporal, and taxonomic aggregation. This flexibility allows the analyst to rapidly gain a number of perspectives on the data and provides a powerful mechanism for exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号