首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
木糖利用能力和抑制物耐受能力优良的工业酿酒酵母菌株以及合理的糖化发酵工艺是纤维素燃料乙醇生产的两个关键.对一株工业酿酒酵母菌的磷酸戊糖途径转醛醇酶基因TAL1进行差异过表达,评价其在8种典型抑制物存在时对菌株利用木糖的影响;利用TAL1过表达菌株研究油菜秸秆预处理物料中抑制物含量高低对分步糖化发酵(SHF)、预糖化-同步糖化发酵(P-SSF)和同步糖化发酵(SSF)3种不同糖化发酵方式发酵过程的影响,探讨高固含量发酵的可行性.结果显示,TAL1基因过表达提高了菌株的木糖代谢能力和对8种典型抑制物的耐受能力,适度过表达菌株表现最优,有抑制物存在时的木糖消耗速率提升了20%-70%.秸秆预处理物料中抑制物总含量约为4 g/L时,SHF无法正常发酵,SSF的乙醇收率接近70%,略高于P-SSF;当物料中抑制物总含量下降到约2 g/L时,3种方式都能顺利发酵,SSF表现最优,96 h时的乙醇收率为86.5%,但SSF(96 h)和P-SSF(112 h)所需糖化发酵总时间远低于SHF(144 h);总固含量约为25%的分批补料-同步糖化发酵(FB-SSF)的乙醇浓度和乙醇收率分别达到54.2 g/L和67.2%.上述结果表明,TAL1基因适度过表达提升了菌株的木糖发酵和抑制物耐受能力,菌株已具备比较优秀的发酵和耐受抑制物的能力;预处理物料中抑制物含量相对较高时采用SSF或P-SSF工艺,而抑制物浓度相对较低时,3种糖化发酵方式都可以采用,但SSF所需发酵时间最短,生产能力最高.  相似文献   

2.
木质纤维素原料预处理过程中产生的抑制物是燃料乙醇发酵的一大障碍,要求工业酿酒酵母菌株具有优秀的抑制物耐受能力.利用平板培养和批次发酵两种方式系统评价了弱酸抑制物(乙酸、甲酸、乙酰丙酸)、呋喃类抑制物[糠醛和5-羟甲基糠醛(HMF)]、酚类抑制物(香草醛、丁香醛、苯酚)对工业酿酒酵母菌株KF-7生长和发酵的影响.结果显示,菌株KF-7在批次发酵时细胞生长对抑制物的耐受性优于平板培养.低浓度的抑制物虽然对菌株的生长有一定的抑制作用,但对乙醇的产生具有一定的促进作用;高浓度抑制物显著抑制了菌株的生长,降低了葡萄糖的代谢速率,抑制了乙醇的产生.菌株KF-7对甲酸耐受能力强于乙酸,对乙酰丙酸的耐受能力较弱.在平板生长评价中,糠醛对菌株生长的抑制作用强于HMF,但在批次发酵过程中HMF的抑制作用强于糠醛;该菌株代谢糠醛的能力强于代谢HMF的能力.香草醛对菌株的抑制作用最强,丁香醛相对较弱.在秸秆水解液中,菌株KF-7也表现出良好的乙醇发酵性能.菌株KF-7无论在单一抑制物、混合抑制物或实际水解液条件下发酵,均能达到较高的乙醇收率.本研究表明,菌株KF-7适用于纤维素原料燃料乙醇工业化生产过程.  相似文献   

3.
纤维素燃料乙醇生产面临的一个重要问题是纤维素原料预处理过程中产生多种副产物会显著抑制酿酒酵母的生长繁殖和发酵,其主要成分弱酸类中甲酸被认为具有最强的抑制效应.为了解工业酿酒酵母混合糖发酵时木糖利用被甲酸特异性显著抑制的机制,为发酵菌株的抑制物耐受育种提供依据,以乙酸存在条件下的发酵为对照,研究甲酸存在条件下菌株分别发酵混合糖和单独木糖时的发酵性能以及糖代谢相关基因的表达差异、葡萄糖浓度对菌株发酵木糖和木糖代谢基因表达的影响,同时研究甲酸存在条件下葡萄糖代谢产物乙酸和乙醇对菌株发酵木糖的影响以及混合糖和单独木糖发酵过程中甲酸浓度变化和甲酸脱氢酶基因FDH1转录情况.结果显示:葡萄糖只有在甲酸存在条件下才特异性地显著抑制木糖发酵,木糖消耗速率的下降与木糖还原酶(XR)和木糖醇脱氢酶(XDH)酶活下降有关;单独木糖发酵时,只有当乙酸、乙醇和甲酸共存时才表现出抑制效应,且随乙醇浓度增加抑制效应越明显,木糖发酵被抑制与XDH酶活下降有关,但乙酸、乙醇和甲酸三者对木糖发酵的协同抑制效应明显弱于60 g/L葡萄糖存在时的抑制;混合糖发酵时FDH1基因转录被抑制导致甲酸分解缓慢,对甲酸存在条件下木糖发酵被抑制有部分贡献.综上,葡萄糖抑制甲酸分解与葡萄糖代谢产物乙酸、乙醇和甲酸的协同抑制对混合糖发酵时甲酸对木糖发酵特异性显著抑制有贡献,但尚存在其他未知抑制机制,还需进一步深入研究.  相似文献   

4.
木质纤维素预处理过程中会产生多种抑制物,抑制酿酒酵母细胞生长及乙醇发酵性能,为挖掘耐性基因、构建新的菌株,进一步提高酿酒酵母对这些抑制物的胁迫耐受性,研究在硫酸锌添加条件下转录组学分析过程中筛选到的可能关键基因ADE17、SSZ1、SET5、PPR1、OGG1和YKL222C过表达对酿酒酵母环境胁迫耐受性的影响.结果显示,不同基因过表达对酿酒酵母在多种抑制物胁迫条件下生长性能的影响不同,其中ADE17过表达对菌株在乙酸、糠醛、苯酚、丙酸和氯化钠胁迫条件下的生长提升最显著,而OGG1和SSZ1过表达对菌株生长的影响相对较弱.进一步对菌株进行驯化,在混合抑制物条件下驯化得到的BADE17-2和BADE17-4菌株延滞期比对照菌株BADE17缩短23 h.上述研究表明,硫酸锌添加从多方面影响了酿酒酵母耐受性,且关键基因过表达对不同环境胁迫条件具有多样性的影响,并且通过基因过表达和驯化方式结合可进一步提高酿酒酵母环境胁迫耐受性,提高纤维素乙醇发酵效率.  相似文献   

5.
利用纤维素原料生产乙醇一直是国内外研究的热点,但纤维素预处理过程产生的弱酸、酚类和糠醛等抑制物对酿酒酵母细胞生长和乙醇发酵具有抑制作用,因此,提高酿酒酵母细胞的环境胁迫耐受性是提高纤维素乙醇发酵效率的重要手段之一.对芳香族氨基酸代谢途径中分支酸歧化酶基因ARO7的过表达对酿酒酵母在胁迫条件下细胞生长和乙醇发酵性能的影响进行研究.结果显示,过表达ARO7的重组菌株在含有5.0 g/L乙酸的平板中生长优于对照菌株;在含有5.0 g/L乙酸的发酵培养基中进行乙醇发酵,过表达ARO7的重组菌株的发酵效率高于对照菌株,在菊芋秸秆水解液中ARO7过表达重组酵母菌株乙醇得率由对照的0.44 g/g提高到0.47 g/g葡萄糖,乙醇生产强度提高了22.38%.以上表明,ARO7的过表达可提高酿酒酵母在抑制物存在条件下纤维素乙醇的发酵效率.  相似文献   

6.
菊芋是生物能源和生物炼制的新型原料作物,具有和其他作物不同的秸秆组成.为了解菊芋秸秆的生物转化情况,本研究首先比较了NaOH-H_2O_2、瞬间弹射蒸汽爆破(ICSE)及NaOH-H_2O_2和ICSE联用等3种预处理方法,证明对于菊芋秸秆NaOH-H_2O_2预处理法简单高效.进一步研究显示,NaOH-H_2O_2预处理过程中水洗一次即可显著促进酶解和后续发酵.利用分批补料和补加纤维素酶的方式进行高物料浓度条件下预处理菊芋秸秆的分步水解和乙醇发酵,当物料浓度达到30%(m/V)时,水解72 h的葡萄糖和木糖浓度分别可达143.6 g/L和36.2 g/L.利用木糖-葡萄糖共发酵重组酿酒酵母菌株LX03在菊芋秸秆水解液中进行乙醇发酵,发酵72 h乙醇最高浓度达66.2 g/L(8.27%,V/V),且发酵总糖利用率达86.9%.本研究利用菊芋秸秆水解液发酵获得较高的乙醇产量,为进一步利用菊芋秸秆进行高效生物炼制及高浓度纤维素乙醇生产提供了参考.(图3表1参23)  相似文献   

7.
木糖是秸秆等纤维素类生物质原料中含量仅次于葡萄糖的第二丰富的糖,构建可高效发酵木糖的酿酒酵母菌株是提高原料利用率、降低纤维素燃料乙醇生产成本的基础.外源基因的高效表达以及本源基因的调控都需要选择表达强度合适的启动子.基于比较转录组,在全基因组水平上比较解析酿酒酵母所有基因在发酵葡萄糖、发酵木糖、发酵混合糖(葡萄糖和木糖)条件下的表达强度,拟为构建木糖利用菌株提供一系列备选的启动子库.结果表明,碳源种类对酿酒酵母启动子的强度有显著影响,绝大多数启动子强度受碳源影响显著,有67个启动子的强度在不同碳源条件下保持了相对稳定;启动子P_(TEF1)和P_(TEF2)、P_(ADH1)、P_(CCW12)和某些核糖体蛋白基因启动子可在构建木糖利用菌株时作为组成型强启动子,另有中、弱强度的组成型启动子可用于基因表达优化;启动子P_(YNR071C)、P_(PUT1)、P_(DSF1)等可作为利用木糖时的诱导型启动子,使基因在有需要的时候才进行表达.本研究在系统解析全基因组启动子强度和碳源种类的关系基础上,为构建利用不同碳源的酿酒酵母菌株提供了具有不同表达特征的候选启动子库.(图1表6参24)  相似文献   

8.
鲜甘薯原料的运动发酵单胞菌快速乙醇发酵条件   总被引:1,自引:0,他引:1  
对运动发酵单胞菌232B同步糖化发酵(SSF)鲜甘薯快速生产燃料乙醇的条件进行了研究.通过单因素试验和正交试验获得了乙醇发酵的最佳参数为:初始pH值6.0~7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始总糖浓度200 g/kg,接种量ψ=12.5%.经过21 h发酵,乙醇浓度为95.15 g/kg.发酵效率可达94%.同时对不灭菌发酵也进行了研究,发酵效率可达92%.残糖的HPLC分析结果说明,发酵液中已没有葡萄糖存在,经酸水解后又出现了葡萄糖、半乳糖、甘露糖等成分,说明发酵结束后的残糖是多种低聚糖.图4表4参19  相似文献   

9.
耐盐酿酒酵母菌株的育种对降低燃料乙醇生产成本具有重要意义.以具有优秀乙醇发酵能力的工业酿酒母菌株KF-7为出发菌株,通过连续发酵、产孢子及孢子培育、交配等获取稳定耐盐菌株.在盐胁迫条件下利用连续乙醇发酵驯化获得了耐盐突变菌株KF-7(4).在此基础上,通过孢子分离、培养、评价和交配,获得两株耐盐二倍体菌株KF-7(4)-3与KF-7-D1.这3株耐盐菌株在50次转接过程中保持着稳定的耐盐性.并且在9%KCl浓度下,3株耐盐菌株的乙醇发酵能力显著优于出发菌株KF-7:在15%YPD培养基中,发酵36 h时的乙醇浓度比出发菌株KF-7提高了21%.有盐和无盐条件下发酵过程中胞内海藻糖含量分析表明,突变菌株KF-7(4)和菌株KF-7(4)-3即使在无盐条件下的海藻糖积累能力明显高于出发菌株KF-7.本研究获得的变异酿酒酵母菌株具有较高的耐盐性和稳定性,耐盐性与胞内海藻糖积累能力提高相关.因此,基于连续发酵的进化工程手段可以有效地用于培育具有某种稳定性状的酿酒酵母菌株.  相似文献   

10.
发酵木糖产乙醇酵母菌的选育及其发酵特性   总被引:1,自引:0,他引:1  
为了提高木质纤维素水解产物中戊糖的利用率,采用划线分离法、TTC(2,3,5-氯代三苯基四氮唑)法从多年生乔木下方土壤及林中朽木中筛选出4株能利用木糖产乙醇的酵母菌。其中1株产乙醇能力较佳,其发酵条件为150 r/m in、30℃、接种量12%、初始pH值6.0时,乙醇产量达4.88g/L,木糖转化率达理论值的24.3%。经初步鉴定,该菌为假单丝酵母属(Cand ida)。研究还表明,该菌株在pH 6.5,温度40℃仍能很好地发酵木糖产乙醇。  相似文献   

11.
适合鲜甘薯原料乙醇发酵的低粘度快速糖化预处理   总被引:2,自引:0,他引:2  
甘薯是我国燃料乙醇生产的主要原料之一.但由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率.本文作者采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,考察了醪液的料水比、预处理温度、pH、时间、离子种类、酶类及添加方式对糖化醪液的葡萄糖值(Dextrose equivalent,DE)和粘度的影响.获得的最佳预处理条件为:料水比2∶1,126℃、pH 2.5条件下预处理5 min,液化,糖化时加入果胶酶40 U/g醪液,纤维素酶0.5 U/g醪液.糖化2 h后,醪液DE值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,糖化2 h后,醪液DE值仅为85.8,粘度大于1.0×105 mPa.s.此预处理方法也可用于快速糖化不加水的醪液.经预处理.糖化2 h,醪液DE值可达97.6,而对照仅为76.6.后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响.图1表4参20  相似文献   

12.
分别克隆了休哈塔假丝酵母(Candida shehatae)的木糖还原酶基因XYL1和热带假丝酵母(Candida tropicalis)的木糖醇脱氢酶基因XYL2,构建出重组表达质粒pACT2-xy11和pDR195-xy12,并使其分别转化酿酒酵母受体细胞.酶活测定结果显示,转化子中木糖还原酶和木糖醇脱氢酶均在宿主菌中得到活性表达.并将这两个基因连同各自重组表达质粒上的表达元件进行了克隆,进而构建出重组酵母染色体整合质粒YIp5.kanR-x12,以期今后通过同源重组的原理将上述基因整合到发酵性能良好的酿酒酵母基因组中,得到稳定代谢葡萄糖和木糖产乙醇的重组酵母菌株.图3表1参15  相似文献   

13.
运动发酵单胞菌是乙醇发酵的极佳菌种,但其所能利用的发酵底物范围狭窄,不能利用淀粉作为发酵底物.为增加其利用底物的范围使其能够水解淀粉,本研究构建了3种表达淀粉酶的运动发酵单胞菌菌株:1)Zymomonas mobilis(pAmyE)表达α-淀粉酶;2)Z.mobilis(pGA)表达葡萄糖淀粉酶;3)Z.mobilis(pAmyGA)共同表达α-淀粉酶和葡萄糖淀粉酶.DNS法测定淀粉酶活显示,每种转化菌株的胞外淀粉酶活性均高于胞内,且两种淀粉酶共表达的酶活高于这两种淀粉酶单独表达的酶活之和,说明这两种淀粉酶能够协同作用降解淀粉.对于重组菌株Z.mobilis(pAmyGA),约59.3%的淀粉酶活性都在胞外检测到.用淀粉含量高且耐贮存的徐薯18匀浆加少量葡萄糖作为培养基直接用上述3个菌株发酵生产乙醇.结果显示,共表达α-淀粉酶和葡萄糖淀粉酶的重组菌株Z.mobilis(pAmyGA)的乙醇产量为54.7 g/L,达到了理论值的83.2%,表明本研究得到了能够直接高效利用淀粉生产乙醇的运动发酵单胞菌的菌株.  相似文献   

14.
一株运动发酵单胞菌Zy-1快速生产乙醇   总被引:1,自引:0,他引:1  
经多次实验优化,得到运动发酵单胞菌Zy发酵葡萄糖生产乙醇较合适的条件.Zy的诱变菌株Zy-1在该条件下发酵葡萄糖生产乙醇比原始菌株更有较大优势.当葡萄糖浓度为200gL^-1时,发酵48h,乙醇浓度96.5gL^-1,残糖2.3gL^-1,发酵效率为94.42%.Zy-1发酵天然原料米粉、木薯、红薯干等,发酵时间44h,乙醇浓度达95gL^-1以上,发酵效率92%以上.发酵液用DNS法测定,还原糖约2gL^-1,残总糖因原料种类不同,其值有所差异(5~20gL^-1).经薄层层析分析,发酵液无葡萄糖,而是二糖、三糖等低聚糖.图2表5参12  相似文献   

15.
以具有优良环境耐受性的产甘油假丝酵母(Candida glycerinogenes)为研究对象,考察其抗逆转录因子对酿酒酵母(Saccharomyces cerevisiae)酸胁迫耐受性的影响.分别克隆获得C.glycerinogenes和S.cerevisiae的转录因子基因haa1和asg1,在S.cerevisiae W303-1A中分别过表达这4个基因,继而进行摇瓶试验考察重组菌株的酸耐受性.结果显示,过表达不同转录因子均能提高细胞酸耐受性,其中90 mmol/L乙酸时重组菌S.cerevisiae/Cghaa1和S.cerevisiae/Cgasg1的生物量与S.cerevisiae/Schaa1和S.cerevisiae/Scasg1相比分别提高了44.3%和18.9%.q RT-PCR发现,与Schaa1和Scasg1相比,过表达Cghaa1和Cgasg1能够显著上调下游酸耐受相关基因的表达水平.酸胁迫下乙醇发酵结果显示,相比对照组,重组菌S.cerevisiae/Cgasg1的乙醇产量提高11.1%.上述结果表明转录因子HAA1和ASG1均能提高酿酒酵母酸耐受性和酸胁迫下乙醇产量,其中Cghaa1和Cgasg1效果更为明显,结果可为提高酿酒酵母酸耐受性提供新的基因资源和思路,为进一步挖掘C.glycerinogenes抗逆基因提供借鉴.  相似文献   

16.
鲜甘薯发酵生产高浓度乙醇的技术   总被引:5,自引:1,他引:4  
乙醇作为燃料可以改善能源结构,减少对石油进口的依赖.高浓度发酵技术是一种生产燃料乙醇的新兴技术,有利于降低乙醇的生产成本.本研究采用酿酒酵母以鲜甘薯为底物进行了快速高浓度乙醇发酵的研究.对高浓度乙醇发酵的影响因素如发酵促进剂种类和浓度、无机盐、维生素及初糖浓度进行了探讨,获得了最佳发酵培养基配方,确定最适发酵促进剂为B,浓度为1.20 g kg-1,不需要添加无机盐和维生素,初糖浓度为270 g kg-1.在最适条件下,28 h可生产乙醇132.86 g kg-1,乙醇发酵强度达4.74 g kg-1h-1,发酵效率达91.44%.发酵规模放大至10 L时,28 h可产生乙醇131.71 g kg-1,乙醇发酵强度为4.70 g kg-1h-1,发酵效率为90.53%.图3表3参16  相似文献   

17.
利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展   总被引:1,自引:0,他引:1  
要实现木质纤维素类生物质的有效利用,当前还面临很多瓶颈问题亟待解决,而缺乏能够同时高效利用纤维素类水解物的发酵菌株是制约纤维素乙醇生产的最关键因素.目前对发酵菌种的研究主要集中在酿酒酵母、运动发酵单胞菌、大肠杆菌和克雷白氏杆菌这4种菌上,已取得大量研究进展,为纤维素乙醇的产业化奠定了一定的基础.本文综述了这4种菌发酵纤维素水解物的基因工程改造研究进展,并对组学时代进一步优化发酵菌株进行了展望.图2表2参51  相似文献   

18.
研究了氧气和震荡条件对酿酒酵母高浓度乙醇发酵的影响.结果表明,震荡是提高发酵液乙醇浓度和产率的最重要因素.与静止培养相比,在不通气情况下震荡培养使乙醇浓度提高了69%(从75.8 g L-1提高到128.1 g L-1),在通气条件下乙醇浓度提高了68.7%(从85.2 g L-1提高到to 143.8 g L-1).在最优条件下,两次补料,经54 h发酵,发酵液中乙醇浓度达到143.8 g L-1,乙醇产率与理论产率的比值为0.471 g/g(即92.20%).经分析,通气和震荡条件提高了发酵液中酿酒酵母的生物量和细胞活力.图5表1参12  相似文献   

19.
酿酒酵母细胞絮凝和外源添加锌离子对其环境胁迫耐受性都具有促进作用,为了解细胞絮凝形态对锌促进乙醇发酵的影响,比较硫酸锌添加对絮凝酿酒酵母SP SC01及其絮凝基因失活突变体SPSC01 FLO1Δ在乙酸胁迫条件下乙醇发酵的影响.结果显示,与野生型絮凝酵母相比,添加锌可更明显改善SPSC01 FLO1Δ在乙酸中的生长和发酵,在10 g L~(-1)乙酸存在的情况下,SPSC01在70 h消耗100 g L~(-1)葡萄糖,锌离子添加后可使发酵终点提前10 h,而SPSC01FLO1Δ在锌离子添加后发酵时间为48 h,可将发酵时间显著缩短138 h.这些结果表明,锌在酿酒酵母细胞缺少絮凝保护的条件下更能有效发挥作用,同时甘油、琥珀酸的增加在絮凝基因敲除突变体中更加明显.本文研究结果可为进一步利用絮凝及锌响应调控基因提高酿酒酵母的环境胁迫耐受性,提高燃料乙醇的生产效率奠定基础.  相似文献   

20.
为提高资源利用效率,降低微生物油脂发酵成本,解决微生物油脂发酵中废弃酵母细胞和发酵废液处理排放的问题,研究隐球酵母(Cryptococcus podzolicus)Zwy-2-3利用栎类淀粉发酵产油情况,并探讨发酵废液和废弃酵母细胞酶解液作为氮源的循环利用.结果显示,以葡萄糖60 g/L和总氮0.18 g/L的废弃酵母细胞酶解液发酵时,循环3次其油脂产量分别达到6.79 g/L、6.66 g/L、6.72 g/L,均高于对照组;而将发酵废液回收用作废弃酵母细胞酶解的缓冲液时,其生物量、油脂产量同对照组相当;将该方法应用于栎类淀粉水解液同步糖化发酵产油脂的实验,循环3次后其生物量、油脂产量分别为13.04 g/L、7.13 g/L,比对照组提高了9.85%、10.03%,且3次循环的油脂含量较为稳定.油脂组分分析结果显示,菌株Zwy-2-3利用栎类淀粉同步糖化和废弃细胞循环酶解液发酵生产的微生物油脂不饱和脂肪酸的含量达到93%以上,与植物油组成相似.综上,酶解废弃酵母细胞可有效应用于酵母产油发酵,可为非粮淀粉生产的微生物油脂应用于生物柴油生产奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号