首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Stable carbon isotope measurements (13C) were used to assess the importance of kelp carbon (-13.6 to-16.5) versus phytoplankton carbon (-25.5 to-26.5) to resident fauna of an isolated kelp bed community on Alaska's north arctic coast from 1979 to 1983. The predominant kelp, Laminaria solidungula, showed some seasonal variation in 13C which was correlated with changes in the carbon content of the tissue. Animals that showed the greatest assimilation of kelp carbon (>=50%) included macroalgal herbivores (gastropods and chitons,-16.9 to-18.2), a nonselective suspension feeder (an ascidian,-19.0) and a predatory gastropod (-17.6). Animals that showed the least incorporation of kelp carbon into body tissues (<=7%) included selective suspension-feeders (hydroids, soft corals and bryozoans,-22.8 to-25.1). Sponges, and polychaete, gastropod and crustacean omnivores exhibited an intermediate dependence on kelp carbon (15 to 40%). Within some taxonomic groups, species exhibited a broad range in isotopic composition which was related to differences in feeding strategies. In the polychaete group alone, 13C values identified four major feeding habits: deposit-feeders (-18.0), omnivores (-20.4), predators (-22.2) and microalgal herbivores (-23.0). Distinct seasonal changes in the 13C values of several animals indicated an increased dependence on kelp carbon during the dark winter period when phytoplankton were absent. Up to 50% of the body carbon of mysid crustaceans, which are key prey species for birds, fishes and marine mammals, was composed of carbon derived from kelp detritus during the ice-covered period.  相似文献   

2.
The White Sea gastropod Hydrobia ulvae (Pennant) was exposed to step-wise lowering or increase of the habitat salinity. The time allowed for acclimatization to the successive salinity levels was sufficient to complete non-genetic adaptation. In this way, the lower and upper salinity limits were extended. The tolerance limits obtained are assumed to be indicative of the capacity for non-genetic adaptation and to serve as a genotypical characteristic. The tolerance of specimens colleced from in situ conditions (mid littoral, 20 S) ranged between 14 and 34 S. After non-genetic adaptation, the lower tolerance value shifted to 6 S (adaptation limit), and the upper value to 76 S (final limit not reached). There is no reason for considering White Sea H. ulvae to represent a special physiological race of specimens from those on the coast of Great Britain.  相似文献   

3.
Rainbow trout (Salmo gairdneri Richardson) which had been maintained for 120 days in salinities of fresh water, 7.5, 15.0 and 32.5 at 10°C were fasted for up to 48 days under these same environmental conditions. Live weight loss between Days 7 and 48 of starvation could be described by a straight line, as could the decrease in condition factor . Trout maintained in 32.5% S showed a significantly greater weight loss than those in salinities of 15.0 and below. Muscle water content increased slightly during fasting in fresh water, 7.5 and 15.0 S. In 32.5 S, however, muscle water fell significantly between Days 19 and 37. Liver water content also increased slightly during fasting, except in 32.5 S, where water content again decreased between Days 19 and 37. The volume of the gall bladder contents increased during fasting.  相似文献   

4.
The 30-d survival limit of Eupentacta quinquesemita and Strongylocentrotus droebachiensis is 12–13 S. The activity coefficient (1 000/righting time in seconds) of stepwise acclimated sea urchins declined from 16.3 at 30 S to 3.5 at 15 S. Oxygen consumption rates (QO2) of both species held at 30 S and 13°C were highest in June and lowest in December. During the summer, when environmental salinity is most variable in southeastern Alaska, the QO2 of both species held at 30, 20 and 15 S varied directly with salinity. Perivisceral fluid PO2 varied directly with acclimation salinity in sea urchins, but not in sea cucumbers. Perivisceral fluid oxygen content of acclimated sea urchins was significantly lower at 15 and 20 S than at 30 S due to reduced PO2 and extracellular fluid volume at the lower salinities. The QO2 of both species varied directly with ambient salinity during a 30-10-30. semidiurnal pattern of fluctuating salinity. No change occurred in the average QO2 of either species over a 15-30-15. semidiurnal pattern of fluctuating salinity. Sea urchin perivisceral fluid PO2 declined as ambient salinity fluctuated away from the acclimation salinity in both cycles and increased as ambient salinity returned to the acclimation salinity. Total nitrogen excretion of stepwise acclimated sea cucumbers declined significantly from 30 to 15 S, but there was no salinity effect on total nitrogen excretion in sea urchins. Ammonia excretion varied directly with salinity in stepwise acclimated sea cucumbers (67–96% of total nitrogen excreted), but there was no salinity effect on ammonia excretion (89–95% of total nitrogen excreted) of sea urchins. Urea excretion did not vary with salinity in sea cucumbers (2–4% of total nitrogen excreted) or sea urchins (2–9% of total nitrogen excreted). Primary amines varied inversely with salinity in sea cucumbers (2–30% of total nitrogen excreted), but did not vary with salinity in sea urchins (2–4% of total nitrogen excreted). The oxygen: nitrogen ratio of both species indicated that carbohydrate and/or lipid form the primary catabolic substrate. The O:N ratio did not vary as a function of salinity. Both species are more tolerant to reduced salinity than previously reported, however, rates of oxygen consumption and/or nitrogen excretion are modified by salinity as well as season.  相似文献   

5.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

6.
In our field study we analyzed the C and H isotopic and biochemical (C, N, P, protein, lipid, carbohydrate) composition of the jellyfish Pelagia noctiluca (collected from the Gulf of Trieste in 1985 to 1986) and its presumed diet-net zooplankton. The mean 13C (-18.8) and D (-58.4) ratios of P. noctiluca showed enrichment in heavy isotopes relative to net zooplankton (2 for carbon and 30 for hydrogen). Both the jellyfish and net zooplankton were characterized by a linear correlation between 13C and D. C. N, P, protein, lipid, and carbohydrate contents of P. noctiluca were low on a dry weight basis as compared to net zooplankton. Significantly lower C:N and C:P ratios were found in jellyfish indicating a greater loss of carbon relative to nitrogen and phosphorus along the passage to a higher trophic level. Isotopic and biochemical evidence indicate that, though collected in nearshore waters, P. noctiluca depended on autochthonous marine organic matter.  相似文献   

7.
A salinity dependent mictic response was observed in a clone of Brachionus plicatilis cultured in the 2 to 4 salinity range. This response was related to asexual exponential reproduction rates (G) and could be divided into three categories: (a) no mixis occurred at a salinity of 35 S and above, where G values were lower than 0.30 d-1, (b) low mictic levels in rotifers cultured at 2 and 30 S, where G values ranged between 0.40 to 0.50 d-1, and (c) high mictic levels in rotifers cultured at salinities ranging between 4 and 20 S, where G values ranged between 0.50 to 0.85 d-1. Fluctuations in mictic levels varied with time during the course of the experiments. Results suggest that salinity conditions leading to optimal parthenogenic reproduction also support mixis.  相似文献   

8.
Routine oxygen consumption of very young juveniles (0.1 g) of Penaeus indicus H. Milne Edwards was significantly influenced by ambient temperature and weight of the animal, but not by ambient salinity, when tested at salinities (7, 21, and 35) to which they had been long-term (over 10 days) acclimated. Standard oxygen consumption of young juvenile prawns (1 to 3 g), subjected to step-wise changes in ambient salinity, from sea water to low salinity waters (2 to 6), and measured after short-term (24 h) salinity acclimation at each step, was lowest at salinities where prawns such as those tested occur naturally (10 to 15). The metabolic rates do not appear to have a direct relation to the osmotic gradient, even when the influence of interfering activity is eliminated. It appears that factors other than osmotic gradient will have to be sought in order to explain the metabolic patterns of P. indicus in relation to salinity.  相似文献   

9.
Respiration rates of Thais haemastoma and Callinectes sapidus were determined as a function of salinity with a flow-through respirometer at 20°C. Respiration rates were measured at 10, 20 and 30 S for acclimated animals. The effects of 10-5-10, 20-10-20, 30-10-30 and 10-30-10 S semidiurnal cycles (12 h) of fluctuating salinity on the rate of respiration of the oyster drill were studied. During each cycle, salinity was changed from the acclimation salinity over a 4 h interval, held at that salinity for 2 h, returned to the acclimation salinity over 4 h and held at that salinity for 2 h. The effects of diurnal (24.8 h) salinity cycles on respiration in the oyster drill and blue crab were also studied. Salinity was changed from the acclimation salinity over a 10.4 h interval, held at that salinity for 2 h, then returned to the acclimation salinity over 10.4 h and held at that salinity for 2 h. The respiration rate of 30 S acclimated oyster drills (679 l O2 g dry weight–1 h–1) was significantly higher than for individuals acclimated to 10 S (534 l O2 g dry weight–1 h–1). Blue crab respiration was 170 l O2 g dry weight–1 h–1 at 30 S, and was significantly higher at 10 and 20 S than at 30 S. With the exception of the 20-10-20 S semidiurnal cycle, the respiration rate of oyster drills declined as salinity fluctuated in either direction from the acclimation salinity and increased as ambient salinity returned to the acclimation salinity. Semidiurnal cycles (12 h) of fluctuating salinity produced greater changes in the respiration rate of snails than analogous diurnal cycles (24.8 h). A 10-30-10 S pattern of fluctuation caused a greater percentage reduction in the steady state respiration rate of oyster drills than the 30-10-30 S pattern. The respiration rate of blue crabs varied inversely with fluctuating salinity. Relatively minor changes occurred in blue crab respiration rate with fluctuating salinity. Blue crab respiration rate characteristically dropped during the initial phase of declining salinity at a rate directly proportional to the rate of salinity decrease, perhaps representing a metabolic adjustment period by the blue crabs. The respiratory response of T. haemastoma to salinity is consistent with its incomplete volume regulation, while the response of C. sapidus is compatible with its ability to regulate extracellular fluid osmotic and ionic composition.  相似文献   

10.
S. V. Job 《Marine Biology》1969,3(3):222-226
Tilapia mossambica (Teleostei) weighing 5 to 80 g were acclimated at 30°C to salinities of 0.4 (tap water), 12.5 (50% sea water) and 30.5 (100% sea water). Their respiration was measured at routine activity and the partial pressure of ambient oxygen gradually reduced from 250 to 50 mm Hg. Respiration is salinity-dependent; the proportionate ability to use oxygen in any one salinity is — above the critical pO2 —the same in all experimental groups. This ability is a function of temperature and increases from 15° to 30°C, becoming temperature independent from 30° to 40°C as long as the pO2 remains above 150 mm Hg. At 50 mm Hg pO2, the limiting effect of oxygen causes a decrease in metabolic rate. This limiting effect is minimal in 80 g fish kept in an isotonic medium (12.5 S), allowing greater scope for activity and a higher rate of oxygen uptake.  相似文献   

11.
Adult male Uca rapax, collected from the central coast of Venezuela in early 1994 were gradually acclimated to salinities ranging from 1.7 to 139S. The hemolymph osmolality (791±15 mOsmol in crabs from 26S) changed less than three-fold over the entire range of concentrations tested. The urine was isosmotic with the hemolymph in crabs exposed to dilutions <26S, and significantly hyperosmotic in those exposed to media >34.8S. The hemolymph levels of Na+, Cl, K+, Ca2+ and Mg2+ (320±13, 405±17, 7.8±0.7, 7.2±0.1 and 31±2.2 mmol l–1, respectively, in crabs acclimated to 26S) were maintained fairly constant over the range from 8.7 to 99S, decreasing by 15% in the more dilute media or increasing sharply to about twice those values in crabs from 139S. The excretory organs contributed to the osmoionic regulation of the hemolymph in crabs exposed to <3.5 or to >34.8S, by means of the partial reabsorption or excretion, respectively, of salts from or into the urine. The results described place U. rapax among the most powerful hypo/hyper-regulating crustaceans known.  相似文献   

12.
This study documents the effects of short-term (24h) sublethal copper exposures on undirected swimming activity and photobehavior of Balanus improvisus stage II nauplii. All Cu treatments were static, with temperature and salinity conditions at 20°C and 15 or 30. The 24h LC 50 estimate for Cu is 88 ppb at 15 and >200 ppb at 30. Sub-lethal Cu concentrations cause reductions in swimming speed, which decrease progressively with increasing Cu dose. At 50 ppb Cu, this was significant primarily at light intensities below the phototactic threshold. At higher Cu concentrations, significant reductions in mean linear velocity occurred at most light intensities tested. At 30, 50 and 100 ppb Cu also reduce the positive phototactic response and 150 ppb Cu causes reversal of phototaxis at optimal intensities. Photokinesis is reduced at 100 ppb Cu and disappears at 150 ppb Cu. At 15, the behavioral effects of 50 ppb Cu resemble those occurring with 150 ppb Cu at 30. Swimming speed and photobehavior show promise as sensitive behavioral indicators of copper toxicity. Additional research is required to determine if these responses apply to a broad range of pollutants and to other planktonic organisms. There is also a need to further evaluate the significance of these behavioral effects ecologically.Contribution No. 181 from the EPA Environmental Research Laboratory, Narragansett, RI 02882, USA  相似文献   

13.
The hemolymph of the blue crab Callinectes sapidus was hyperosmotic during 20-10-20 S and 30-10-30 S diurnal cycles. The hemolymph became isosmotic at 26 S and hyposmotic at 28 S in the 10-30-10 S diurnal cycle. Hemolymph Na+ was hyperionic to seawater throughout all cycles. Hemolymph Cl- was hyperionic below 24 S and either isionic or hypoionic from 24 to 30 S. Hemolymph K+ concentrations were hyperionic below 26 S and either isionic or hypoionic from 26 to 30 S. Hemolymph Mg++ values were hypoionic over the experimental salinity range (10 to 30). Hemolymph ninhydrin-positive substances (NPS) levels were directly related to ambient salinity.  相似文献   

14.
Mayzaud  P.  Dallot  S. 《Marine Biology》1973,22(4):307-312
The effects of sublethal concentrations of mercury in combination with stressful temperature-salinity regimes were considered for larval development of the fiddler crab Uca pugilator (Bosc.). Control organisms were compared to those treated with 1.8 ppb Hg for the following suboptimal regimes: 30°C, 30 S; 30°C, 20 S; 20°C, 30 S, and 20°C, 20 S. As physiological indicators of larval response, the survival rate, the O2 consumption rate, and phototactic response were measured, following either acute 24 h doses of Hg, or chronic rearing in Hg. All response parameters were modified in larvae maintained under the suboptimal conditions; mercury compounded the effects.Supported by Grant No. 18080 FYI from the Environmental Protection Agency.  相似文献   

15.
In a study to assess qualitatively the importance of organic matter derived from kelp production in the Aleutian Islands of subarctic Alaka, replicated samples of autotrophic sources and primary and secondary consumer organisms were sampled for 13C among sources, sites, (treatment) islands, and years. Unanticipated variation in the 13C of kelps occurred among overtly similar sites at different islands. Variation in the 13C of the surface canopy-forming kelp Alaria fistulosa was particularly extreme, ranging from-15.5 to-28.0 compared to the understory kelps, Laminaria spp. A. fistulosa 13C varied by as much as 6 to 7 among similar sites at a given island within years, and by as much as 3 to 4 between years at the same sampling site. In serveral cases, 13C variation was weakly tracked by some consumer organisms, suggesting that even detritus pathways through the food web can be localized and tightly coupled. Dynamic cycles in the concentration and 13C of dissolved inorganic carbon (DIC) and aqueous CO2 concentration ([CO2]aq) were measured at three sites on one island. The 13C or organic carbon fixed by A. fistulosa, calculated from diurnal DIC concentration and 13C measurements, varied by 15 and varied inversely with [CO2]aq concentrations. Local DIC variability, probably resulting from high productivity and decreased turbulence in dense kelp habitats, provides a possible mechanism of variation in kelp 13C. The short-term variability in the 13C of organic carbon fixed by kelps indicates that sampling methodology and design must assess this potential variation in marine macrophyte 13C before making assumptions about the transfer of 13C-invariate organic matter to higher trophic levels. On the positive side, a predictable relationship between [CO2]aq concentration and kelp 13C offers a potentially robust means to assess productivity effects on CO2 limination in kelps and other complex aquatic macrophyte habitats.  相似文献   

16.
The seasonal variations in distribution and abundance of the common zooplankton species in the Bristol Channel and Severn Estuary were related to the salinity regimes observed over the period November 1973 to February 1975. The dominant constituents in all regions were the calanoid copepods, which reached maximum densities in July: approximately 100 times their winter levels. Four zooplankton assemblages were recognised using an objective classification program which computed similarity coefficients and used group-average sorting. The assemblages existed along the salinity gradient observed from the Severn Estuary to the Celtic Sea. The assemblages were classified as true estuarine, estuarine and marine, euryhaline marine and stenohaline marine and were characterized by the copepods Eurytemora affinis (Poppe) (<30S), Acartia bifilosa var. inermis (rose) (27 to 33.5S), Centropages hamatus (Lilljeborg) (31 to 35S) and Calanus helgolandicus (Claus) (>33S), respectively.  相似文献   

17.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

18.
Adult Patiriella pseudoexigua were collected in October 1989 from Wanlitung, Taiwan and then induced to spawn in the laboratory. Post-metamorphosed juvenile P. pseudoexigua were reared on a diet of benthic algae Navicula sp. at 25°C and salinity (34). Six weeks after metamorphosis, juvenile P. pseudoexigua at ca. 400 m in radius were reared on a diet of benthic algae Navicula sp. at different combinations of temperatures (20, 25, 30°C) and salinities (26, 30, 34) for 40 d. Both temperature and salinity had a significant effect on juvenile survival and growth. Juveniles survived best (>90%) at 25°C and 34 and grew best (to ca. 750 m in radius) at 30°C and 34. Variation in juvenile size was small immediately after metamorphosis and increased with time.  相似文献   

19.
The responses of the post-embryonic stages of Corophium volutator (Pallas) and C. arenarium Crawford to the combined effects of salinity and temperature show that gravid females have a wider tolerance than nongravid adult females which in turn are more tolerant than adult males. C. volutator is more tolerant of low salinity (2 to 10) than C. arenarium, but the latter is more tolerant of salinities above 45. The embryos of C. volutator develop normally and hatch at lower salinities and temperatures than those of C. arenarium, in which successful development was recorded at higher temperatures. Females undergoing a pre-copulatory moult failed to lay eggs below salinities of 3 (C. volutator) and 10 (C. arenarium), but in both species the lowest salinity at which all females moulted and laid eggs was 20. The results are discussed in relation to the distribution of both species.  相似文献   

20.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号