首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A systematic survey of organochlorine pesticides (OCPs) including hexachlorocyclohexane isomers (α-HCH, β-HCH, γ-HCH, δ-HCH and ΣHCH) and dichlorodiphenyltrichloroethane metabolites (p,p′-DDT, p,p′-DDE, o,p′-DDT, p,p′-DDD and ∑DDT) in soils along the north coastal areas of the Bohai Sea, China, has been lacking. In this study, 31 representative surface soil samples were collected along the north coastal and riverine areas of the Bohai Sea to characterise the potential for adverse effects of ∑HCH, ∑DDT and their individual isomers and transformation products. Concentrations of ΣHCH and ΣDDT in soils ranged from less than the limit of detection (1 ng · g?1 dw (mean: 3.5 ng · g?1 dw) and2 ng · g?1 dw (mean: 1.7 × 101 ng · g?1 dw), respectively. Compared with studies of OCPs in soils from other locations, concentrations of HCHs and DDTs observed in this study were moderate. Concentrations of OCPs observed in soils were generally less than proposed reference values. HCH residues were a mixture of historical technical HCH and current lindane sources. The pattern of DDTs was consistent with historical releases of technical DDTs. Selected soil physicochemical properties did not explain the sorption and/or partitioning of HCHs or DDTs.  相似文献   

2.
Twenty-one organochlorine pesticides (OCPs) were measured in the muscle of six predominant waterbird species from Jianghan Plain, Hubei Province, Central China. Among OCPs, DDTs were the most prevalent compounds, with average concentration ranging from 31.1 to 1445 ng/g lipid weight. Little egrets (Egretta garzetta) and Chinese pond herons (Ardeola bacchus) showed significantly higher concentrations of OCPs (p < 0.05) due to their dietary habits and migratory patterns. There were no statistically significant differences (p > 0.05) for most OCPs between sex and age groups. The accumulation profiles of HCHs and DDTs suggested that these OCPs in Jianghan Plain were largely derived from historical usage. Risk assessment indicated that heptachlor could be likely to pose adverse health effects on people consuming ducks in Jianghan Plain.  相似文献   

3.
广东北江上游流域农田土壤有机氯农药残留及其分布特征   总被引:3,自引:0,他引:3  
北江是珠江的重要支流之一,为确定北江上游流域农田土壤有机氯农药(OCPs)的含量、来源以及分布特征,2010年11月,对该区域水稻田、菜地和果园土壤进行了采样、处理以及GC/MS分析。研究结果表明:27种OCPs中,除环氧七氯、狄氏剂、硫丹I、反式九氯、顺式九氯、异狄氏剂醛和甲氧氯外,其余均有不同程度的检出。总OCPs质量分数为2.71~62.4 ng.g-1,平均11.9 ng.g-1;含量最高的为DDTs,其次为硫丹和HCHs,其质量分数范围分别为1.82~60.3、0.103~19.6和nd(未检出)~1.74 ng.g-1;水稻田土壤DDTs的含量与果园相当,但明显高于菜地的残留水平。研究区域OCPs的源分析表明,HCHs主要来自于早期商业HCHs和林丹农药的残留,DDTs源于商业DDTs和三氯杀螨醇农药的残留。北江上游流域农田表层土壤OCPs储存量约为342 kg,其中DDTs 243 kg、硫丹63.7 kg、HCHs 15.0 kg。与国内外同类型报道相比,结合我国GB 15618-1995《土壤环境质量标准》,研究区域土壤OCPs残留的程度较低。  相似文献   

4.
Soil is an important source to other environmental media and organisms for organochlorine pesticides (OCPs) bioaccumulation. Twenty-four representative surface soil samples were collected from the lower reaches of the Jiulong River, China, in 2009. The concentrations of hexachlorocyclohexane isomers (HCHs) ranged from 0.38 to 39.52 ng·g?1, with a mean value of 9.51 ng·g?1. The concentrations of dichlorodiphenyltrichloroethanes (DDTs) and their metabolites were within the ranges of 0.94–700.99 ng·g?1, with a mean value of 71.17 ng·g?1. The concentrations of HCHs and DDTs in the soil were lower than the first grade level (50 ng·g?1) of the Chinese Environmental Quality Standard (GB15618-1995). Hierarchical Cluster Analysis (HCA) and Pearson’s bivariate Correlations Analysis (PCA) were used to analyse the distribution and contamination levels of OCPs in this region. The results showed that DDTs were the major contaminants and there were no significant correlations between various OCPs concentrations and the total organic carbon (TOC) contents. A significant positive correlation was observed between HCHs and DDTs (p<0.01), which indicates that HCHs and DDTs may have similar sources and fate in the study area.  相似文献   

5.
ABSTRACT

An ultrasonic extraction – gas chromatography – electron capture detector analytical method was used to measure the concentration and types of organochlorine (OC) pesticides in sediment to obtain a better understanding of the characteristics and hidden ecological risks associated with OC pesticide exposure in surface sediment of the Qingshitan Reservoir. Fifteen types of OC pesticides were detected in the sediment, and the sum concentration of these chemicals was in the 149.32–490.19 ng/g range (mean value: 319.39 ng/g). The concentrations of detected OC pesticides occurred in the following order: hexachlorohexanes (HCHs) (mean value: 200.17 ng/g) > DDTs (mean value: 36.92 ng/g) > heptachlors (mean value: 32.74 ng/g) > methoxychlor (mean value: 24.13 ng/g). There was a 100% detection rate for HCH isomers, and their concentrations occurred in the following order: β-HCH > δ-HCH > γ-HCH > α-HCH. β-HCH was the main component of HCHs. Ratios between α-HCH/γ-HCH and β-/(α+γ)-HCH were used to investigate the sources of pollution. Most of the surveyed areas were polluted by lindane, which originated from past pesticide residue usage, and no new inputs of HCHs were found. DDT was the major component of the DDTs, and accounted for 52%–87% of the DDTs. The ratios of (DDE+DDD)/DDT at all sample collection points were less than 1, indicating that degradation rate of DDTs in sediment was low and there was a new input of DDTs in these surveyed areas. The ratio of DDD/DDE was less than 1 at most of the sample collection points, indicating that the degradation of DDT in the sediments primarily took place under aerobic conditions. Comparison of OC pesticide residual levels in the underwater sediment collected at the Qingshitan Reservoir to other states and countries showed the pollution level of these chemicals of the Qingshitan Reservoir was relatively high. The ecological risk was assessed based on guideline values of effects range-low (ERL) and effects range-medium (ERM). The results showed that DDD, DDE, DDTs and endrin residues in the sediment posed a moderate ecological risk, but DDT and γ-HCH showed high ecological risk. These OC pesticides might adversely affect biological systems, and need to be addressed.  相似文献   

6.
To study the influence of long-term pesticide application on the distribution of organochlorine pesticides (OCPs) in the soil–groundwater system, 19 soil samples and 19 groundwater samples were collected from agricultural area with long-term pesticide application history in Northern China. Results showed that the composition of OCPs changed significantly from soil to groundwater. For example, ∑DDT, ∑HCH, and ∑heptachlor had high levels in the soil and low levels in the groundwater; in contrast, endrin had low level in the soil and high level in the groundwater. Further study showed that OCP distribution in the soil was significantly influenced by its residue time, soil organic carbon level, and small soil particle contents (i.d. <0.0002 mm). Correlation analysis also indicates that the distribution of OCPs in the groundwater was closely related to the levels of OCPs in the soil layer, which may act as a pollution source.  相似文献   

7.
The levels, potential sources and ecological risks of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in Yellow River of Henan section, a typical agricultural area in China, were investigated. Surface water samples and suspended particulate matters (SPMs) were collected from 23 sites during two seasons. In wet season, the residues of ∑HCHs (α-HCH, β-HCH, γ-HCH and δ-HCH) and ∑DDTs (p,p′-DDT, o,p′-DDT, p,p′-DDE, p,p′-DDD) ranged from 41.7 to 290 and 4.42 to 269 ng/L in surface water, while those varied from 0.86 to 157 and 1.79 to 96.1 ng/g dw in SPM, respectively. Moreover, in surface water, the levels of HCHs and DDTs in wet season were much higher than those in dry season. The reverse was true for residues of HCHs and DDTs in SPM. Compared with the large rivers in other regions, the levels of HCHs and DDTs in the studied area ranked at high levels and the residual concentrations might cause adverse biological risk, especially for ∑HCHs during wet season. Distributions of HCHs and DDTs delineated that the input of tributaries made a significant effect on the residue of HCHs and DDTs in the mainstream. ∑HCHs in surface water were consist of 26.7 % α-HCH, 30.0 % β-HCH, 37.9 % γ-HCH and 5.45 % δ-HCH and those in SPM contained 5.16 % α-HCH, 22.1 % β-HCH, 60.5 % γ-HCH and 12.2 % δ-HCH on average. Combined with ratios of α-HCH/γ-HCH in surface water (0.70) and in SPM (0.09), the results strongly indicated that lindane was recently used or discharged in the studied area. The mean percentage of DDTs′ isomers were 28.7 % p,p′-DDT, 29.8 % o,p′-DDT, 28.1 % p,p′-DDE and 13.4 % p,p′-DDD in surface water, while those were 12.5 % p,p′-DDT, 31.8 % o,p′-DDT, 30.5 % p,p′-DDE and 25.1 % p,p′-DDD in SPM. The ratios of (DDE + DDD)/∑DDTs and o,p′-DDT/p,p′-DDT revealed that the DDTs in the studied area mainly derived from long-term weathering of technical DDTs residue and the input of dicofol.  相似文献   

8.
The residue levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and 16 selected organochlorine pesticides (OCPs) in rice and rice hull collected from a typical e-waste recycling area in southeast China were investigated from 2005 to 2007. PAHs and OCPs also were measured in ten mollusk species (soft tissues) collected in an adjacent bay in 2007. Individual PAHs were frequently found in the entire sample set (including the rice, hull, and mollusk samples) with a detection rate of 73 %. The total concentrations of 16 PAHs (ΣPAHs) and 16 OCPs (ΣOCPs) were in the range of 40.8–432 ng/g dry weight (mean: 171 ng/g) and 2.35–925 ng/g (122 ng/g), respectively, which were comparable or higher than those reported in some polluted areas. Statistical comparisons suggested that the concentrations of contaminants in hull gradually decreased from 2005 to 2007 and the residue levels were generally in the order of mollusk, hull, and rice, on a dry weight basis. Principal component analysis in combination with diagnostic ratios implied that combustion of coal, wood, and plastic wastes that are closely associated with crude e-waste recycling activities is the main source of PAHs. The finding of decreasing trend of concentrations of PAHs in this area is consistent with the efforts of local authorities to strengthen regulations on illegal e-waste recycling activities. Composition analysis suggested that there is a recent usage or discharge of hexachlorocyclohexane and dichlorodiphenyltrichloroethane into the tested area. The estimated daily intake (EDI) of ΣPAHs and ΣOCPs (calculated from mean concentrations) through rice and mollusk consumption was 0.411 and 0.921 μg/kg body weight (bw)/day, respectively.  相似文献   

9.
赣江流域中下游底泥中有机氯农药污染特征   总被引:2,自引:0,他引:2  
赵慈  刘小真  周立峰  梁越  赵信  洪桂平 《生态环境》2010,19(10):2419-2424
为了解赣江流域有机氯农药污染状况,采用索氏提取方法(Soxhlet Extraction,SE)和气相色谱法(GC-ECD),对所采集的18个底泥样品中10种有机氯农药(OCPs)的残留进行测定,并对其组分分布和来源进行了分析。结果表明,所有样品均检出10种有机氯农药,底泥中∑OCPs质量分数范围为11.813-39.197μg·kg-1,HCHs、DDTs质量分数范围分别为1.636-20.877μg·kg-1和5.590-14.092μg·kg-1,HCHs的质量分数低于DDTs,六氯苯(HCB)和七氯(Heptachlor)的质量分数相对较低,分别为0.229-6.940μg·kg-1和0.507-3.936μg·kg-1。组分分布特征分析表明,它们除了来自环境中的早期残留外,仍然具有大量新的外源HCHs和DDTs的输入,可能是新的林丹输入以及三氯杀螨醇的使用,这可能与近年来沿江农业的发展有关。  相似文献   

10.
成都城区蔬菜地土壤中农药残留及其分布特征   总被引:1,自引:0,他引:1  
采用GC-ECD检测、GC/MS-MS确证的方法对成都城区14个区县蔬菜地土壤中23种有机氯农药(OCPs)进行分析,以揭示OCPs的残留现状及其分布特征。结果表明,OCPs残留水平在不同区县间差异很大,变化范围20.18~104.33μg.kg-1之间,近郊区县(双流、龙泉驿、郫县、新都、温江)远低于边缘区县。被检出的18种OCPs中,DDTs、HCHs检出率最高(100%),残留水平为16.11~99.51、1.31~9.34μg.kg-1,分别占OCPs残留总量质量分数的87.68%、8.15%;六氯苯(HCB)次之(90%);灭蚁灵、环氧七氯、硫丹Ⅰ和γ-氯丹也有不同程度的检出(44.29%~47.14%),主要分布在近郊区县;艾氏剂、狄氏剂、异狄氏剂、毒杀芬的检出率较低(32.86%~37.14%),多分布于彭州、都江堰、大邑、崇州等地。土壤中OCPs的各种异构体、代谢物变化规律显示,DDTs、HCHs残留主要源于早期的使用或大气输入,但不排除金堂、青白江、新津地区近期可能有新的DDTs输入,崇州、彭州、都江堰、大邑地区可能有HCHs输入。  相似文献   

11.
Surface soil and sediment samples were collected from the surroundings of Lila stream, which passes through the obsolete pesticides dumping area Kalashah Kaku near Lahore city, to evaluate the residual levels of 19 organochlorine pesticides (OCPs), their distribution and potential sources. OCPs followed the order: ∑ DDT>∑ HCH>dicofol>endrin>heptachlor>dieldrin. Ratios of β to γ-HCH highlighted an old source of technical HCH in the study area, whereas the predominance of p, p′-DDT and p, p′-DDE indicated presence of technical DDT in surface soils. Factor analysis based on principal component analysis identified the origin of OCPs from industrial activities in Kalashah Kaku and waste dumping from Ittehad Chemical Industries via open drains into Lila stream. Greater levels of DDTs and HCHs above quality guideline pose potential exposure risk to biological organisms, safety of agricultural products and human health in the surrounding of Lila stream.  相似文献   

12.
Based on the available toxicity data and the concentrations of DDTs and HCHs in surface water from the upper reaches of the Huaihe River, overlapping areas of probability density and margin of safety (MOS10) were used to estimate the risk levels of DDTs and HCHs to aquatic organisms. The overlapping areas of α-HCH, γ-HCH, p,p′-DDE, p,p′-DDD, and p,p′-DDT were found to be 9.3 × 10?5, 4.6 × 10?3, 4.3 × 10?2, 2.2 × 10?2, and 4.2 × 10?2, respectively. The risks from DDTs were higher than those from HCHs, the risk from α-HCH being the smallest. The MOS10 values of α-HCH, γ-HCH, p,p′-DDE, p,p′-DDD, and p,p′-DDT were 2.6 × 103, 97, 5.9, 15, and 8.6, respectively, i.e. greater than 1.0, indicating limited overlaps between the distributions of exposure concentrations and of toxicity data, and thus minimal ecological risk. Health risk calculations based on incremental lifetime risks for HCHs and DDTs were conducted to evaluate human cancer risk and non-carcinogenic hazard. The total cancer risks from organochlorine pesticides (OCPs) in the studied area were in the range of 10?8–10?7, lower than the baseline value of acceptable risk (10?6). Non-carcinogenic hazard indices of OCPs ranging from 10?6 to 10?5 were much lower than the threshold values (1.0). These results suggest that the water from the upper reaches of the Huaihe River does not pose any health risk for local residents using river water as a source for drinking water.  相似文献   

13.

Polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phenolic compounds (PCs) are persistent organic compounds. Contamination of these potentially toxic organic pollutants in soils and sediments is most studied environmental compartments. In recent past, studies were carried out on PAHs, OCPs and PCs in various soils and sediments in India. But, this is the first study on these pollutants in soils and sediments from an urbanized river flood plain area in Delhi, India. During 2018, a total of fifty-four samples including twenty-seven each of soil and sediment were collected and analyzed for thirteen priority PAHs, four OCPs and six PCs. The detected concentration of ∑PAHs, ∑OCPs and ∑PCs in soils ranged between 473 and 1132, 13 and 41, and 639 and 2112 µg/kg, respectively, while their concentrations in sediments ranged between 1685 and 4010, 4.2 and 47, and 553 and 20,983 µg/kg, respectively. PAHs with 4-aromatic rings were the dominant compounds, accounting for 51 and 76% of total PAHs in soils and sediments, respectively. The contribution of seven carcinogen PAHs (7CPAHs) in soils and sediments accounted for 43% and 61%, respectively, to ∑PAHs. Among OCPs, p, p’-DDT was the dominant compound in soils, while α-HCH was found to be dominated in sediments. The concentrations of ∑CPs (chlorophenols) were dominated over ∑NPs (nitrophenols) in both the matrices. Various diagnostic tools were applied for the identification of their possible sources in soil and sediments. The observed concentrations of PAHs, OCPs and PCs were more or less comparable with the recently reports from various locations around the world including India. Soil quality guidelines and consensus-based sediment quality guidelines were applied for the assessment of ecotoxicological health effect.

  相似文献   

14.
为研究六六六(HCHs)和滴滴涕(DDTs)在太原市不同功能区土壤中的暴露格局、来源以及对周围人群的健康风险,在太原市化工区、灌区、矿区、生态区周边荒地土壤中进行采样,分析测定了土壤中HCHs和DDTs含量,根据太原市人群实际情况的暴露参数和USEPA的部分参数,对土壤HCHs和DDTs的健康风险进行评价。结果表明:1)太原市表层土壤中HCHs的平均含量大小依次为化工区>灌区>矿区>生态区;DDTs平均含量的大小依次为化工区>灌区>矿区>生态区,仅6%的HCHs和3%的DDTs和的平均残留水平均高于我国土壤质量标准一级标准,但均不超过二级标准值;2)土壤中HCHs残留主要源于历史上林丹的使用,DDTs残留则来源于历史和新污染源的共同影响;3)太原市表层土壤HCHs和DDTs致癌风险大小为化工园区>矿区>灌区>生态区。非致癌风险大小为化工区>矿区>灌区>生态区。3种暴露途径的在不同功能区的健康风险贡献率大小均为经口摄入>呼吸吸入>皮肤接触;综合来看太原市表层土壤中的HCHs和DDTs并未对人类造成非致癌风险,但有一定的致癌风险。本文的研究结果可为太原市土壤质量评价和环境污染防治提供科学指导,并对太原市人群的健康风险防治提供依据。  相似文献   

15.
在湖北保安湖采集主要食用鱼类(团头鲂、鲫鱼、草鱼)样品,通过测定鱼体中的重金属(Cr、Cd、As、Pb、Hg、Cu、Zn)和有机氯农药(六六六(HCHs)、滴滴涕(DDTs))含量,基于不同评估模型分析了这3种鱼的污染特征和健康风险。结果显示,鱼样中Cr、Cu、Zn、As、Cd、Pb和Hg的含量分别为1.03~1.13、0.93~1.66、22.80~31.54、0.08~0.49、0.004~0.007、0.040~0.050和0.03~0.06 mg·kg~(-1);鱼样中HCHs、DDTs的含量为5.94~38.04和5.99~38.38 ng·g~(-1)ww。根据国家规定的有毒有害物质限量标准,团头鲂和鲫鱼中As分别超标0.2和3.9倍;鲫鱼体内HCHs和草鱼体内DDTs含量分别超标0.9和2.8倍;其他鱼样重金属和有机氯农药含量均未超过标准限值。总体来看,鲫鱼重金属严重污染,重金属综合污染程度的顺序是鲫鱼团头鲂草鱼;鲫鱼和草鱼体内有机氯农药(OCPs)达到重度污染,OCPs综合污染程度为草鱼鲫鱼团头鲂; 3种鱼样重金属和OCPs复合暴露条件下健康风险评估结果表明,食用3种鱼肉的致癌风险都大于10-6,即均存在一定的潜在致癌风险,致癌风险概率为鲫鱼草鱼团头鲂,同时,食用鲫鱼还存在非致癌健康风险,其污染来源及有效防治值得进一步研究。  相似文献   

16.
从广东省西江流域三个饮用水源地采集三个样品,分别分析其中两类持久性有机污染物—有机氯农药和多环芳烃的含量以及来源,从这两类污染物对水环境污染的角度初步判断饮用水源的安全性。首先采用液液萃取的方法对样品进行前处理,然后分别用GC.ECD和GC—MS测定有机氯农药和多环芳烃的含量。实验发现有机氯农药质量浓度在水相中为1.99ng·L^-1~ 4.76ng·L^-1,在颗粒相中为0.36ng·L^-1~0.68ng·L^-1;多环芳烃质量浓度在水相中为73.40ng·L^-1~865.89ng·L^-1,在颗粒相中为16.76ng·L^-1~19.31ng·L^-1。结果表明,六六六和滴滴涕质量浓度低于国标《生活饮用水水源水质标准》(CJ3020.93)的规定,同时苯并[a]芘也低于世界卫生组织《饮用水水质标准》的规定,而其它物质标准中均无规定。由此说明,就有机氯农药和多环芳烃这两类污染物在水中的含量来说,广东西江领域饮用水源是相对安全的。但是由于这两类污染物都具有很强的生物富集性,因此它们在水环境中的存在和作用也是不容忽视的。  相似文献   

17.
深圳湾典型有机氯农药的生物累积及其人体健康风险   总被引:3,自引:2,他引:1  
位于深圳与香港之间的深圳湾是一个典型的亚热带海湾,在过去的二、三十年间,海湾的生态环境发生了巨大变化.为了更好地理解深圳湾有机氯农药(OCPs)的污染现状及其生物累积规律,于2004年2月采集了该海域23个鱼类、虾类、蟹类生物样品,分析了其体内滴滴涕(DDT)、六六六(HCH)和氯丹(CHL)各组分的含量,并对其人体健康风险进行了初步评价.结果表明,深圳湾海域鱼类DDTs、HCHs和CHLs含量范围分别为1.84~286.83、0.08~1.85、0.45~118.81ng·g-1ww(鲜重),肉食性鱼类OCPs含量通常较高;与其它海区相比,深圳湾海域水生生物体中DDTs的含量相对较高,部分鱼类样品中DDTs含量超过我国海洋生物质量国家标准(GB18421-2001)的二级标准,HCHs和CHLs则相对较低;生物体中DDTs、HCHs、CHLs的含量与其脂含量呈显著正相关(p<0.01);鱼类中DDTs、HCHs和CHLs的危害指数(HR)分析显示,目前食用深圳湾鱼类对人体正常健康(非癌症)基本无影响,但却存在潜在的致癌风险.  相似文献   

18.
Xijiang River is an important drinking water source in Guangxi Province, China. Along the Xijiang River and surrounding tributary, the pollution profile of three important groups of semi-volatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phthalate esters (PAEs), was analyzed. Relatively low levels of PAHs (64–3.7 × 102 ng L?1) and OCPs (16–70 ng L?1), but high levels of PAEs (7.9 × 102–6.8 × 103 ng L?1) occurred in the water. Comparatively, low levels of OCPs (39–1.8 × 102 ng g?1) and PAEs (21–81 ng g?1), but high levels of PAHs (41–1.1 × 103 ng g?1) were found in sediment. Principal component analyses for source identification indicated petroleum-derived residues or coal and biomass combustion, and vehicular emission was the main sources for PAHs. The OCPs sources of each category were almost independent, whereas the new input of HCHs and p,p′-DDTs probably existed in some areas. PAEs were mainly originated from personal care products of urban sewage, plastic and other industrial sources. Ecological risk through the risk quotient analysis indicated a small or significant potential adverse effect on fish, daphnia and green algae. Nevertheless, the integrated risk of all pollutants should be taken into account in future study.  相似文献   

19.
We investigated selected chlorinated pollutants (β-HCH, γ-HCH, DDDs, DDEs, o,p′-DDT, p,p′-DDT, heptachlor, aldrin, dieldrin, and endrin) in the Lahore and the Sialkot districts of Pakistan, using eggs of cattle egret (Bubulcus ibis) collected during May and June 2007. The pollutant with highest level and frequency was ΣDDT, followed by β-HCH, γ-HCH, heptachlor, aldrin, dieldrin, and endrin in descending order. The concentration(s) were significantly higher in Sialkot heronry for all the pollutants (except p,p′-DDT) than in Lahore. The values for DDTs, β-HCH, γ-HCH, and heptachlor were significantly higher (p < 0.05) in the egg(s) than in sediment(s) and in the chicks’ diet, due to biomagnification. Among DDTs analogues, p,p′-DDD was the major contaminant with >60 % of total DDT burden, reflecting the widespread aged as well as recent use of DDT as well as anaerobic degradation (DDD/DDE > 1 in many cases) in the nearby paddy soils. In few samples, p,p′-DDT/(DDD + DDE) > 0.5 suggested the recent emission patterns from surrounding contaminated areas of demolished DDT units and obsolete pesticide stores. The higher levels of HCHs (i.e., β-HCH) in the samples collected from Sialkot indicate exposure from long-term agricultural use. Overall, concentrations of all studied POPs were less than the threshold levels known to affect reproduction. Nevertheless, total DDTs and/or HCHs burdens in some eggs contained concentrations of greater than what would educe adverse effects on birds. This is among few studies on OCPs exposure to avian species, which provide the evidence of Pakistan’s contribution toward the Global POPs emission.  相似文献   

20.
The concentrations of 16 polycyclic aromatic hydrocarbons (∑ 16PAHs) were measured by gas chromatography equipped with a mass spectrometry detector (GC-MS) in 56 topsoil samples around Guanting Reservior (GTR), which is an important water source for Beijing. Low to medium levels of PAH contamination (mean=394.2±580.7 ng g?1 dry weight (d.w.)) was evident throughout the region. In addition, localised areas of high PAH contamination near steel and cement factories were identified, with ∑ 16PAHs concentrations as high as 4110 ng/g, dry weight (d.w.). There was a significant positive correlation (r2=0.570, p<0.01) between total organic carbon content and ∑ 16PAHs concentrations. Phenanthrene was the predominant compound, accounting for 27.2% of the ∑ PAH concentration, followed by chrysene>pyrene>benzo[a]anthracene≈ benzo[b]fluoranthene≈ benzo[a]pyrene. Four-ring PAH homologues (39%) were dominant. The higher proportion of 4–6 ring homologues, molecular indices, and the spatial distribution of PAH indicated that industrial discharges, incineration of wastes and traffic discharges were the major sources of soil PAHs around the water reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号