首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

2.
LeRoy CJ  Whitham TG  Keim P  Marks JC 《Ecology》2006,87(1):255-261
Although it is understood that the composition of riparian trees can affect stream function through leaf litter fall, the potential effects of genetic variation within species are less understood. Using a naturally hybridizing cottonwood system, we examined the hypothesis that genetic differences among two parental species (Populus fremontii and P. angustifolia) and two groups of their hybrids (F1 and backcrosses to P. angustifolia) would affect litter decomposition rates and the composition of the aquatic invertebrate community that colonizes leaves. Three major findings emerged: (1) parental and hybrid types differ in litter quality, (2) decomposition differs between two groups, a fast group (P. fremontii and F1 hybrid), and a slow group (P. angustifolia and backcross hybrids), and (3) aquatic invertebrate communities colonizing P. fremontii litter differed significantly in composition from all other cross types, even though P. fremontii and the F1 hybrid decomposed at similar rates. These findings are in agreement with terrestrial arthropod studies in the same cottonwood system. However, the effects are less pronounced aquatically than those observed in the adjacent terrestrial community, which supports a genetic diffusion hypothesis. Importantly, these findings argue that genetic interactions link terrestrial and aquatic communities and may have significant evolutionary and conservation implications.  相似文献   

3.
Conservation of Insect Diversity: a Habitat Approach   总被引:8,自引:1,他引:7  
Abstract: Neither time nor resources exist to design conservation plans for every species, particularly for little-studied, noncharismatic, but ecologically important taxa that make up most of biodiversity. To explore the feasibility of basing conservation action on community-level biogeography, we sampled a montane insect community. We addressed three issues: (1) the appropriate scale for sampling insect communities; (2) the association of habitat specialization—perhaps a measure of extinction vulnerability—with other ecological or physical traits; and (3) the correlation of diversity across major insect groups. Using malaise traps in Gunnison County, Colorado, we captured 8847 Diptera (identified to family and morphospecies), 1822 Hymenoptera (identified to morphospecies), and 2107 other insects (identified to order). We sampled in three habitat types—meadow, aspen, and conifer—defined on the basis of the dominant vegetation at the scale of hundreds of meters. Dipteran communities were clearly differentiated by habitat type rather than geographic proximity. This result also holds true for hymenopteran communities. Body size and feeding habits were associated with habitat specialization at the family level. In particular, habitat generalists at the family level—taxa perhaps more likely to survive anthropogenic habitat alteration—tended to be trophic generalists. Dipteran species richness was marginally correlated with hymenopteran species richness and was significantly correlated with the total number of insect orders sampled by site. Because these correlations result from differences in richness among habitat types, insect taxa may be reasonable surrogates for one another when sampling is done across habitat types. In sum, community-wide studies appear to offer a practical way to gather information about the diversity and distribution of little-known taxa.  相似文献   

4.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

5.
Strategies for conserving plant diversity in agroecosystems generally focus on either expanding land area in non-crop habitat or enhancing diversity within crop fields through changes in within-field management practices. In this study, we compare effects on landscape-scale species richness from such land-sharing or land-sparing strategies. We collected data in arable field, grassland, pasture, and forest habitat types (1.6 ha sampled per habitat type) across a 100-km2 region of farmland in Lancaster County, Pennsylvania, USA. We fitted species-area relationships (SARs) for each habitat type and then combined extrapolations from the curves with estimates of community overlap to estimate richness in a 314.5-ha landscape. We then modified these baseline estimates by adjusting parameters in the SAR models to compare potential effects of land-sharing and land-sparing conservation practices on landscape richness. We found that species richness of the habitat types showed a strong inverse relationship to the relative land area of each type in the region, with 89 species in arable fields (66.5% of total land area), 153 in pastures (6.7%), 196 in forests (5.2%), and 213 in grasslands (2.9%). Relative to the baseline scenario, major changes in the richness of arable fields produced gains in landscape-scale richness comparable to a conversion of 3.1% of arable field area into grassland habitat. Sensitivity analysis of our model indicated that relative gains from land sparing would be greatest in landscapes with a low amount of non-crop habitat in the baseline scenario, but that in more complex landscapes land sharing would provide greater gains. These results indicate that the majority of plant species in agroecosystems are found in small fragments of non-crop habitat and suggest that, especially in landscapes with little non-crop habitat, richness can be more readily conserved through land-sparing approaches.  相似文献   

6.
Fragments as Islands: a Synthesis of Faunal Responses to Habitat Patchiness   总被引:7,自引:0,他引:7  
Abstract:  Scientific interest in the impact of habitat fragmentation on biodiversity is increasing, but our understanding of fragmentation is clouded by a lack of appreciation for fundamental similarities and differences across studies representing a wide range of taxa and landscape types. In an effort to synthesize data describing ecological responses of animals to fragmentation across two classes of independent variables (taxonomic group and landscape), we sampled 148 studies of five major faunal groups from the primary literature and analyzed data on 13 variables extracted from those studies. We focused our analyses on three classes of dependent variables (effects of area and isolation on species richness, z values, and nestedness and species composition). Area ranged over more orders of magnitude than isolation and tended to explain more variation in species richness than isolation. There were few matrix or taxon effects on the patterns we investigated, although we did find that sky islands tended to manifest isolation effects on both species richness and nestedness more frequently than other patch types. Sky islands may offer insight into the future of habitat patches fragmented by contemporary habitat loss, and because they show a stronger effect of isolation than other patch types, we suggest that isolation will play an increasing role in the biology of habitat fragments. We use multiple lines of evidence to suggest that our understanding of the role of isolation on community assembly in fragmented landscapes is inadequate. Finally, our observation that consistent taxonomic differences in community patterns were minimal suggests that conservation actions intended to mitigate the negative effects of extinction may have far-reaching effects across taxonomic groups.  相似文献   

7.
运用景观生态学的方法 ,选取斑块形状指数、斑块形状破碎化指数、分维数、景观多样性指数、均匀度、相对丰富度、优势度等指标 ,对深圳盐田区的植被格局进行分析。结果显示 :在城乡发展过程中 ,盐田区植被景观保存较好 ,类型丰富 ;植被景观总体上呈现出符合其生境特征的规则分布 ;群落景观异质性较高 ,拥有南亚热带的沟谷雨林、山地常绿阔叶林、红树林等特色植被景观 ;沟谷雨林和季风常绿林是本区较脆弱的生态系统 ,应积极加以保护和发展  相似文献   

8.
Abstract:  Our objective was to reexamine the definition and use of surrogates in biodiversity studies of disturbed ecological communities. To this end, we examined diversity and community structure in recovering (pollution damaged) and restored (via liming, fertilizing, seeding, and planting) forests in the Great Lakes-St. Lawrence zone near Sudbury, Ontario, Canada. The relationships among taxonomic groups were determined using correlations between Shannon diversity and species richness. We used correspondence analysis to quantify the contribution of taxonomic groups to diversity and community structure. We detected useful surrogates in the naturally recovering forests but not in restored forests. In the former, vascular plant diversity was significantly correlated with nonvascular plant diversity and reflected community structure in the total plant community. Our results suggest that it may be important to restore and conserve diversity relationships rather than simply diversity levels because the relationships may be better indicators of ecosystem health or function.  相似文献   

9.
Agriculturally altered vegetation, especially oil‐palm plantations, is rapidly increasing in Southeast Asia. Low species diversity is associated with this commodity, but data on anuran diversity in oil‐palm plantations are lacking. We investigated how anuran biological diversity differs between forest and oil‐palm plantation, and whether observed differences in biological diversity of these areas is linked to specific environmental factors. We hypothesized that biological diversity is lower in plantations and that plantations support a larger proportion of disturbance‐tolerant species than forest. We compared species richness, abundance, and community composition between plantation and forest areas and between site types within plantation and forest (forest stream vs. plantation stream, forest riparian vs. plantation riparian, forest terrestrial vs. plantation terrestrial). Not all measures of biological diversity differed between oil‐palm plantations and secondary forest sites. Anuran community composition, however, differed greatly between forest and plantation, and communities of anurans in plantations contained species that prosper in disturbed areas. Although plantations supported large numbers of breeding anurans, we concluded the community consisted of common species that were of little conservation concern (commonly found species include Fejervarya limnocharis, Microhyla heymonsi, and Hylarana erythrea). We believe that with a number of management interventions, oil‐palm plantations can provide habitat for species that dwell in secondary forests. Efectos de las Plantaciones de Palma de Aceite sobre la Diversidad de Anuros Tropicales Faruk et al.  相似文献   

10.
Effect of Human Disturbance on Bee Communities in a Forested Ecosystem   总被引:11,自引:0,他引:11  
Abstract:  It is important for conservation biologists to understand how well species persist in human-dominated ecosystems because protected areas constitute a small fraction of the Earth's surface and because anthropogenic habitats may offer more opportunities for conservation than has been previously thought. We investigated how an important functional group, pollinators (bees; Hymenoptera: Apiformes), are affected by human land use at the landscape and local scales in southern New Jersey (U.S.A.). We established 40 sites that differed in surrounding landscape cover or local habitat type and collected 2551 bees of 130 species. The natural habitat in this ecosystem is a forested, ericaceous heath. Bee abundance and species richness within forest habitat decreased, not increased, with increasing forest cover in the surrounding landscape. Similarly, bee abundance was greater in agricultural fields and suburban and urban developments than in extensive forests, and the same trend was found for species richness. Particular species groups that might be expected to show greater sensitivity to habitat loss, such as floral specialists and bees of small or large body size, did not show strong positive associations with forest habitat. Nevertheless, 18 of the 130 bee species studied were positively associated with extensive forest. One of these species is a narrow endemic that was last seen in 1939. Our results suggest that at least in this system, moderate anthropogenic land use may be compatible with the conservation of many, but not all, bee species.  相似文献   

11.
Tea in Darjeeling foothills and terai are grown conventionally, with application of chemical fertilizers and pesticides, as well as organically without these inputs. Ground level arthropod community was collected from the above two types of tea plots using pitfall traps. Catches from these environments showed variation in the arthropod faunal structure with numerically and taxonomically greater abundance in the organic than that of the conventional plot. Coleopterans were more diverse with largest number of families and Recognizable Taxonomic Units (or morphospecies) in the organic tea plot. The diversity and similarity indices for coleopterans were comparable, in organic and conventional tea plots at species and family levels. The close relationship of the indices suggested that diversity study at family level could be used as surrogate for species level diversity; thus alleviating the laborious and expertise job of taxonomic identification of arthropod species. Faunal diversity study at ground level gave the clue that soil of the organic plantation was healthier than that of the conventional tea plot.  相似文献   

12.
Wimp GM  Murphy SM  Finke DL  Huberty AF  Denno RF 《Ecology》2010,91(11):3303-3311
Numerous studies have examined relationships between primary production and biodiversity at higher trophic levels. However, altered production in plant communities is often tightly linked with concomitant shifts in diversity and composition, and most studies have not disentangled the direct effects of production on consumers. Furthermore, when studies do examine the effects of plant production on animals in terrestrial systems, they are primarily confined to a subset of taxonomic or functional groups instead of investigating the responses of the entire community. Using natural monocultures of the salt marsh cordgrass Spartina alterniflora, we were able to examine the impacts of increased plant production, independent of changes in plant composition and/or diversity, on the trophic structure, composition, and diversity of the entire arthropod community. If arthropod species richness increased with greater plant production, we predicted that it would be driven by: (1) an increase in the number of rare species, and/or (2) an increase in arthropod abundance. Our results largely supported our predictions: species richness of herbivores, detritivores, predators, and parasitoids increased monotonically with increasing levels of plant production, and the diversity of rare species also increased with plant production. However, rare species that accounted for this difference were predators, parasitoids, and detritivores, not herbivores. Herbivore species richness could be simply explained by the relationship between abundance and diversity. Using nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM), we also found significant changes in arthropod species composition with increasing levels of production. Our findings have important implications in the intertidal salt marsh, where human activities have increased nitrogen runoff into the marsh, and demonstrate that such nitrogen inputs cascade to affect community structure, diversity, and abundance in higher trophic levels.  相似文献   

13.
共有种反映毗邻生境节肢动物群落的相互作用程度及其潜在互作途径的多样性.通过对施用林丹烟剂后毛竹林冠层与林下层节肢动物的系统定位调查,分析和比较了林丹烟剂干扰下两个林层的节肢动物共有种及其多样性.结果表明,以未防治和白僵菌防治为对照,施用林丹烟剂显著减少了林冠和林下层的共有种及其个体数,降低了两个林层中共有种的多样性;在物种方面主要表现为蜘蛛目、膜翅目、鞘翅目、双翅目和鳞翅目共有种减少;在个体方面,林下层主要表现为蜘蛛目、膜翅目、鞘翅目和双翅目共有种个体减少,林冠层主要表现为蜘蛛目、鞘翅目和双翅目共有种个体减少.但无论在物种还是个体方面,林丹烟剂对捕食性共有种的影响均最大.进一步的灰色关联分析表明,引起共有种多样性下降的主要原因在于共有物种的减少.因此认为,林丹烟剂干扰削弱了林下和林冠层节肢动物之间的相互作用,不利于林下生境促进林冠层生物多样性和增强群落对叶部害虫自然控制作用等生态功能的发挥.图1表6参22  相似文献   

14.
Cost-effective proxies of biodiversity and species abundance, applicable across a range of spatial scales, are needed for setting conservation priorities and planning action. We outline a rapid, efficient, and low-cost measure of spectral signal from digital habitat images that, being an effective proxy for habitat complexity, correlates with species diversity and requires little image processing or interpretation. We validated this method for coral reefs of the Great Barrier Reef (GBR), Australia, across a range of spatial scales (1 m to 10 km), using digital photographs of benthic communities at the transect scale and high-resolution Landsat satellite images at the reef scale. We calculated an index of image-derived spatial heterogeneity, the mean information gain (MIG), for each scale and related it to univariate (species richness and total abundance summed across species) and multivariate (species abundance matrix) measures of fish community structure, using two techniques that account for the hierarchical structure of the data: hierarchical (mixed-effect) linear models and distance-based partial redundancy analysis. Over the length and breadth of the GBR, MIG alone explained up to 29% of deviance in fish species richness, 33% in total fish abundance, and 25% in fish community structure at multiple scales, thus demonstrating the possibility of easily and rapidly exploiting spatial information contained in digital images to complement existing methods for inferring diversity and abundance patterns among fish communities. Thus, the spectral signal of unprocessed remotely sensed images provides an efficient and low-cost way to optimize the design of surveys used in conservation planning. In data-sparse situations, this simple approach also offers a viable method for rapid assessment of potential local biodiversity, particularly where there is little local capacity in terms of skills or resources for mounting in-depth biodiversity surveys.  相似文献   

15.
Abstract:  The use of a surrogate taxon in conservation planning has become questionable because recent evidence suggests that the correlation of species richness between pairs of taxa is highly variable both taxonomically and geographically. Species richness is only one measure of species diversity, however, and recent studies suggest that investigations of cross-taxon congruence should consider a broader range of assessment techniques. The cross-taxon congruence of community similarity between sites among taxa has rarely been examined and may be the most relevant measure of species diversity in the context of coarse-filter conservation strategies. We examined cross-taxon congruence patterns of species richness and community similarity (Bray-Curtis similarity) among birds, butterflies, and vascular plants in montane meadow habitats in the Greater Yellowstone Ecosystem. Although patterns of species richness (Spearman rank correlation) varied between taxa, we consistently found a positive correlation in community similarity (Mantel test) between all pair-wise comparisons of the three taxa (e.g., sites with similar bird communities also had similar butterfly communities). We suggest that the success of a surrogate taxon depends on the technique used to assess surrogacy and the specific approach to conservation planning. In the context of coarse-filter conservation, measures of community similarity may be more appropriate than measures of species richness. Furthermore, the cross-taxon congruency of community similarity in our study suggests that coarse-filter conservation may be tenable in montane meadow communities.  相似文献   

16.
Abstract: Invertebrates are important functionally in most ecosystems, but seldom appraised as surrogate indicators of biological diversity. Priority species might be good candidates; thus, here we evaluated whether three freshwater invertebrates listed in the U.K. Biodiversity Action Plan indicated the richness, composition, and conservation importance of associated wetland organisms as defined respectively by their alpha diversity, beta diversity, and threat status. Sites occupied by each of the gastropods Segmentina nitida, Anisus vorticulus, and Valvata macrostoma had greater species richness of gastropods and greater conservation importance than other sites. Each also characterized species assemblages associated with significant variations between locations in alpha or beta diversity among other mollusks and aquatic macrophytes. Because of their distinct resource requirements, conserving the three priority species extended the range of wetland types under management for nature conservation by 18% and the associated gastropod niche‐space by around 33%. Although nonpriority species indicated variations in richness, composition, and conservation importance among other organisms as effectively as priority species, none characterized such a wide range of high‐quality wetland types. We conclude that priority invertebrates are no more effective than nonpriority species as indicators of alpha and beta diversity or conservation importance among associated organisms. Nevertheless, conserving priority species can extend the array of distinct environments that are protected for their specialized biodiversity and environmental quality. We suggest that this is a key role for priority species and conservation surrogates more generally, and, on our evidence, can best be delivered through multiple species with contrasting habitat requirements.  相似文献   

17.
Abstract:  Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants—a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.  相似文献   

18.
Biodiversity loss is proceeding at an unprecedented rate, yet we lack a thorough understanding of the consequences of losing diversity at different scales. While species diversity is known to impact community and ecosystem processes, genotypic diversity is assumed to have relatively smaller effects. Nonetheless, a few recent studies suggest that genotypic diversity may have quantitatively similar ecological consequences compared to species diversity. Here we show that increasing either genotypic diversity of common evening primrose (Oenothera biennis) or species diversity of old-field plant species resulted in nearly equivalent increases (approximately 17%) in aboveground primary production. The predominant mechanism explaining this effect, niche complementarity, was similar for each type of diversity. Arthropod species richness also increased with both types of plant diversity, but the mechanisms leading to this effect differed: abundance-driven accumulation of arthropod species was important in plant genotypic polycultures, whereas resource specialization was important in plant species polycultures. Thus, similar increases in primary productivity differentially impacted higher trophic levels in response to each type of plant diversity. These results highlight important ecological similarities and differences between genotypic and species diversity and suggest that genotypic diversity may play a larger role in community and ecosystem processes than previously realized.  相似文献   

19.
Altermatt F  Holyoak M 《Ecology》2012,93(5):1125-1133
Natural ecosystems often show highly productive habitats that are clustered in space. Environmental disturbances are also often nonrandomly distributed in space and are either intrinsically linked to habitat quality or independent in occurrence. Theoretical studies predict that configuration and aggregation of habitat patch quality and disturbances can affect metacommunity composition and diversity, but experimental evidence is largely lacking. In a metacommunity experiment, we tested the effects of spatially autocorrelated disturbance and spatial aggregation of patch quality on regional and local richness, among-community dissimilarity, and community composition. We found that spatial aggregation of patch quality generally increased among-community dissimilarity (based on two measures of beta diversity) of communities containing protozoa and rotifers in microcosms. There were significant interacting effects of landscape structure and location of disturbances on beta diversity, which depended in part on the specific beta diversity measures used. Effects of disturbance on composition and richness in aggregated landscapes were generally dependent on distance and connectivity among habitat patches of different types. Our results also show that effects of disturbances in single patches cannot directly be extrapolated to the landscape scale: the predictions may be correct when only species richness is considered, but important changes in beta diversity may be overlooked. There is a need for biodiversity and conservation studies to consider the spatial aggregation of habitat quality and disturbance, as well as connectivity among spatial aggregations.  相似文献   

20.
In most protected areas of the Indian Himalayan region site/habitat characteristics, community diversity and distribution pattern, vegetation composition (richness of native and endemic species), structural patterns, economic importance of forest communities and community priorities have rarely been studied. Therefore, the present study has focused on these in the buffer zone of Nanda Devi Biosphere Reserve. Seventy-six woody species (trees: 24; shrubs: 52) and 13 forest communities have been recorded between 2300–3800 m asl. Tree density ranged from 533–1220 ind ha-1, tree basal area from 14.68-80.28 m2ha-1 and shrub density from 1490–6695 ind ha-1. Mean density of trees was significantly lower in temperate forests in comparison to subalpine forests. Richness of trees ranged from 3–18 and shrubs from 5–29. Species diversity (H') of trees ranged from 0.45-2.08 and shrubs from 0.90-3.14. In the temperate zone, species richness and altitude had significant positive correlations whereas in the subalpine zone the two variables were negatively correlated. The native species were high in the area (> 65% species) and in communities (> 70% species), and was highest for the Picea smithiana-Pinus wallichiana mixed community, whereas the maximum numbers of natives and endemic species were recorded in the Pinus wallichiana community. The density and richness of non-natives were found to be significantly lower in comparison to the natives. Economic importance and conservation value of the communities were assessed and communities prioritized. Monitoring of the identified habitats, species, populations and communities, and development of appropriate strategies for their conservation and management are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号