首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
For policy decisions with respect to CO2-mitigation measures in the agricultural sector, national and regional estimations of the efficiency of such measures are required. The conversion of ploughed cropland to zero-tillage is discussed as an option to reduce CO2 emissions and promises at the same time effective soil and water conservation. Based on the upscaling of simulation results with the soil and land resources information system SLISYS-BW, estimations of CO2-mitigation rates in relation to crop rotations and soil type have been made for the state of Baden-Württemberg (Germany). The results indicate considerable differences in the CO2-mitigation rates between crop rotations ranging from 0.48 to 0.03 Mg C ha−1 a−1 for winter cereals–spring cereals–rape rotations and winter cereals–spring cereals–corn silage rotations, respectively. The efficiency of the crop rotations is strongly related to the total carbon input and in particular the amount of crop residues. Among the considered soil types, highest CO2-mitigation rates are associated with Cumulic Anthrosols (0.62 Mg C ha−1 a−1) and the lowest with Gleysols (−0.01 Mg C ha−1 a−1). An agricultural extensification scenario with conventional plowing but conversion of the presently applied intensive crop rotations to a clover–clover–winter cereals rotation indicated a CO2-mitigation potential of 466 Gg C a−1. However, the present high market prices for cereals and increasing demand for energy production from biomass encourages an intensification of the agricultural production and an excessive removal of biomass which in future will seriously reduce the potential for carbon sequestration on cropland.  相似文献   

2.
The role of disturbance and climate factors in determining the forest carbon balance was investigated at a Japanese cypress forest in central Japan with eddy flux measurements, tree-ring analyses, and a terrestrial biosphere model. The forest was established as a plantation after intermittent harvesting and replanting between 1959 and 1977, and acted as a strong carbon sink of approximately 500 g C m−2 year−1 for the measurement years between 2001 and 2007. A terrestrial biosphere model, BIOME-BGC, was validated using the eddy flux data at daily to interannual timescales, and the tree-ring width data at interannual to decadal timescales. According to the model simulation, during the observation period 270 ± 55 g C m−2 year−1 was additionally sequestered due to the indirect effects of the harvesting and planting, whereas the increase of CO2 concentration and the change in climate increased the sink of 110 ± 40 and 30 ± 80 g C m−2 year−1, respectively. The model simulation shows that the forest is now recovering from harvesting, and that harvesting is a more important determinant of the current carbon sink than either interannual climate anomalies or increased atmospheric CO2 concentration. We found that harvesting with long rotation length could be effective management activity in order to increase carbon sequestration, if the harvested timber is converted into products with long lifecycles.  相似文献   

3.
Soil carbon (C) models are important tools for examining complex interactions between climate, crop and soil management practices, and to evaluate the long-term effects of management practices on C-storage potential in soils. CQESTR is a process-based carbon balance model that relates crop residue additions and crop and soil management to soil organic matter (SOM) accretion or loss. This model was developed for national use in U.S and calibrated initially in the Pacific Northwest. Our objectives were: (i) to revise the model, making it more applicable for wider geographic areas including potential international application, by modifying the thermal effect and incorporating soil texture and drainage effects, and (ii) to recalibrate and validate it for an extended range of soil properties and climate conditions. The current version of CQESTR (v. 2.0) is presented with the algorithms necessary to simulate SOM at field scale. Input data for SOM calculation include crop rotation, aboveground and belowground biomass additions, tillage, weather, and the nitrogen content of crop residues and any organic amendments. The model was validated with long-term data from across North America. Regression analysis of 306 pairs of predicted and measured SOM data under diverse climate, soil texture and drainage classes, and agronomic practices at 13 agricultural sites having a range of SOM (7.3–57.9 g SOM kg−1), resulted in a linear relationship with an r2 of 0.95 (P < 0.0001) and a 95% confidence interval of 4.3 g SOM kg−1. Using the same data the version 1.0 of CQESTR had an r2 of 0.71 with a 95% confidence interval of 5.5 g SOM kg−1. The model can be used as a tool to predict and evaluate SOM changes from various management practices and offers the potential to estimate C accretion required for C credits.  相似文献   

4.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

5.
The crop models in the Decision Support System for Agrotechnology Transfer (DSSAT) have served worldwide as a research tool for improving predictions of relationships between soil and plant nitrogen (N) and crop yield. However, without a phosphorus (P) simulation option, the applicability of the DSSAT crop models in P-deficient environments is limited. In this study, a soil-plant P model integrated to DSSAT was described, and results showing the ability of the model to mimic wide differences in maize responses to P in Ghana are presented as preliminary attempts to testing the model on highly weathered soils. The model simulates P transformations between soil inorganic labile, active and stable pools and soil organic microbial and stable pools. Plant growth is limited by P between two concentration thresholds that are species-specific optimum and minimum concentrations of P defined at different stages of plant growth. Phosphorus stress factors are computed to reduce photosynthesis, dry matter accumulation and dry matter partitioning. Testing on two highly weathered soils from Ghana over a wide range of N and P fertilizer application rates indicated that the P model achieved good predictability skill at one site (Kpeve) with a final grain yield root mean squared error (RMSE) of 535 kg ha−1and a final biomass RMSE of 507 kg ha−1. At the other site (Wa), the RMSE was 474 kg ha−1 for final grain yield and 1675 kg ha−1 for final biomass. A local sensitivity analysis indicated that under P-limiting conditions and no P fertilizer application, crop biomass, grain yield, and P uptake could be increased by over 0.10% due to organic P mineralization resulting from a 1% increase in organic carbon. It was also shown that the modeling philosophy that makes P in a root-free zone unavailable to plants resulted in a better agreement of simulated crop biomass and grain yield with field measurements. Because the complex soil P chemistry makes the availability of P to plants extremely variable, testing under a wider range of agro-ecological conditions is needed to complement the initial evaluation presented here, and extend the use of the DSSAT-P model to other P-deficient environments.  相似文献   

6.
The carbon flow through the sediments at a station located in 18.3 m of water off the Scripps Institution of Oceanography, San Diego, California (USA) was determined. The parameters studied [and their mean rates of input (+) or output (-) to the benthos] were macro-detritus (+0.028 gC m-2day-1), fallout of particulate debris (+3.3 gC m-2day-1), benthic net photosynthesis during the day (-0.06 gC m-2 daylight period-1), burial (0 gC m-2day-1), benthic respiration at night (-0.28 gC m-2 night period-1), and resuspension (-3.0 gC m-2day-1). Resuspension of sediment at this station was found to have a controlling effect on the sediment organic carbon content. Benthic photosynthesis was able to provide 79% of the organic carbon required by the benthos for respiration during the daylight hours. A carbon-flow diagram linking together all of the above measurements is presented.  相似文献   

7.
Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical-biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from ?115 m to the bottom (?2000 m). The biogeochemical model involves a refined representation of the Black Sea foodweb from bacteria to gelatinous carnivores. It includes notably a series of biogeochemical processes typical for oxygen deficient conditions with, for instance, bacterial respiration using different types of oxidants (i.e denitrification, sulfate reduction), the lower efficiency of detritus degradation, the ANAMMOX (ANaerobic AMMonium OXidation) process and the occurrence of particular redox reactions. The model has been calibrated and validated against all available data gathered in the Black Sea TU Ocean Base and this exercise is described in Gregoire et al. (2008). In the present paper, we focus on the biogeochemical flows produced by the model and we compare model estimations with the measurements performed during the R.V. KNORR expedition conducted in the Black Sea from April to July 1988 (Murray and the Black Sea Knorr Expedition, 1991). Model estimations of hydrogen sulfide oxidation, metal sulfide precipitation, hydrogen sulfide formation in the sediments and water column, export flux to the anoxic layer and to the sediments, denitrification, primary and bacterial production are in the range of field observations.With a simulated Gross Primary Production (GPP) of 7.9 mol C m−2 year−1 and a Community Respiration (CR) of 6.3 mol C m−2 year−1, the system is net autotrophic with a Net Community Production (NCP) of 1.6 mol C m−2 year−1. This NCP corresponds to 20% of the GPP and is exported to the anoxic layer. In order to model Particulate Organic Matter (POM) fluxes to the bottom and hydrogen sulfide profiles in agreement with in situ observations, we have to consider that the degradation of POM in anoxic conditions is less efficient that in oxygenated waters as it has often been observed (see discussion in Hedges et al., 1999). The vertical POM profile produced by the model can be fitted to the classic power function describing the oceanic carbon rate (CR=Zα) using an attenuation coefficient α of 0.36 which is the value proposed for another anoxic environment (i.e. the Mexico Margin) by Devol and Hartnett (2001). Due to the lower efficiency of detritus degradation in anoxic conditions and to the aggregation of particles that enhanced the sinking, an important part of the export to the anoxic layer (i.e. 33%, 0.52 mol C m−2 year−1) escapes remineralization in the water column and reaches the sediments. Therefore, sediments are active sites of sulfide production contributing to 26% of the total sulfide production.In the upper layer, the oxygen dynamics is mainly governed by photosynthesis and respiration processes as well as by air-sea exchanges. ?71% of the oxygen produced by phytoplankton (photosynthesis+nitrate reduction) is lost through respiration, ?21% by outgasing to the atmosphere, ?5% through nitrification and only ?2% in the oxidation of reduced components (e.g. Mn2+, Fe2+, H2S).The model estimates the amount of nitrogen lost through denitrification at 307 mmol N m−2 year−1 that can be partitioned into a loss of ?55% through the use of nitrate for the oxidation of detritus in low oxygen conditions, ?40% in the ANAMMOX process and the remaining ?5% in the oxidation of reduced substances by nitrate.In agreement with data analysis performed on long time series collected since the 1960s (Konovalov and Murray, 2001), the sulfide and nitrogen budgets established for the anoxic layer are not balanced in response to the enhanced particle fluxes induced by eutrophication: the NH4 and H2S concentrations increase.  相似文献   

8.
No consensus currently exists about how climate change should affect the status of soil organic matter (SOM) in the tropics. In this study, we analyse the impact of climate change on the underlying mechanisms controlling SOM dynamics in a ferralsol under two contrasting tropical crops: maize (C4 plant) and banana (C3 plant). We model the effect of microbial thermal adaptation on carbon (C) mineralisation at the crop system scale and introduce it in the model STICS, which was previously calibrated for the soil-crop systems tested in this study. Microbial thermal adaptation modelling is based on a reported theory for thermal acclimation of plant and soil respiration. The climate is simulated from 1950 to 2099 for the tropical humid conditions of Guadeloupe (French Antilles), using the ARPEGE model and the IPCC emission scenario A1B. The model predicts increases of 3.4 °C for air temperature and 1100 mm yr−1 for rainfall as a response to an increase of 375 ppm for atmospheric carbon dioxide concentration in the 2090-2099 decade compared with the 1950-1959 decade. The results of the STICS model indicate that the crop affects the response of SOM to climate change by controlling the change in several variables involved in C dynamics: C input, soil temperature and soil moisture. SOM content varies little until 2020, and then it decreases faster for maize than for banana. The decrease is weakened under the hypothesis of thermal adaptation, and this effect is greater for maize (−180 kg C ha−1 yr−1 without adaptation and −140 kg C ha−1 yr−1 with adaptation) than for banana (−60 kg C ha−1 yr−1 and −40 kg C ha−1 yr−1, respectively). The greater SOM loss in maize is mainly due to the negative effect of warming on maize growth decreasing C input from residues. Climate change has a small effect on banana growth, and SOM loss is linked to its effect on C mineralisation. For both crops, annual C mineralisation increases until 2040, and then it decreases continuously. Thermal adaptation reduces the initial increase in mineralisation, but its effect is lower on the final decrease, which is mainly controlled by substrate limitation. No stabilisation in SOM status is attained at the end of the analysed period because C mineralisation is always greater than C input. Model predictions indicate that microbial thermal adaptation modifies, but does not fundamentally change the temporal pattern of SOM dynamics. The vegetation type (C3 or C4) plays a major role in SOM dynamics in this tropical soil because of the different impact of climate change on crop growth and then on C inputs.  相似文献   

9.
The export of wetland-derived materials to the coastal ocean (i.e., the “Outwelling” hypothesis) has received considerable attention over the past several decades. While a number of studies have shown that estuaries export appreciable amounts of nutrients and carbon, few studies have attempted to estimate the importance of estuarine sources for the coastal carbon budgets in river-dominated coastal ecosystems. A novel tidal prism model was developed to examine estuarine-shelf exchanges in the Barataria estuary, a deltaic estuary located in the north-central Gulf of Mexico. This estuary has been the site of a massive wetland loss, and it has been hypothesized that carbon export from the eroding coastal wetlands supports the development of a large hypoxic zone in the coastal Gulf of Mexico. The model results show that the Barataria estuary receives nitrogen through the tidal passes and releases carbon to the coastal ocean. The mean calculated tidal water discharge of 6930 m3 s−1 is equivalent to about 43% of the lower Mississippi River discharge. The annual total organic carbon (TOC) export is 109 million kg, or 57 gC m2 yr−1 when prorated to the total water area of the estuary. This carbon export is equivalent to a loss of 0.5 m of wetland soil horizon over an area of 8.4 km2, and accounts for about 34% of the observed annual wetland loss in the estuary between 1978 and 2000. Compared to the lower Mississippi River, the Barataria estuary appears to be a very small source of TOC for the northern Gulf of Mexico (2.7% of riverine TOC), and is unlikely to have a significant influence on the development of the Gulf's hypoxia.  相似文献   

10.
Global emissions trading allows for agricultural measures to be accounted for the carbon sequestration in soils. The Environmental Policy Integrated Climate (EPIC) model was tested for central European site conditions by means of agricultural extensification scenarios. Results of soil and management analyses of different management systems (cultivation with mouldboard plough, reduced tillage, and grassland/fallow establishment) on 13 representative sites in the German State Baden-Württemberg were used to calibrate the EPIC model. Calibration results were compared to those of the Intergovernmental Panel on Climate Change (IPCC) prognosis tool. The first calibration step included adjustments in (a) N depositions, (b) N2-fixation by bacteria during fallow, and (c) nutrient content of organic fertilisers according to regional values. The mixing efficiency of implements used for reduced tillage and four crop parameters were adapted to site conditions as a second step of the iterative calibration process, which should optimise the agreement between measured and simulated humus changes. Thus, general rules were obtained for the calibration of EPIC for different criteria and regions. EPIC simulated an average increase of +0.341 Mg humus-C ha−1 a−1 for on average 11.3 years of reduced tillage compared to land cultivated with mouldboard plough during the same time scale. Field measurements revealed an average increase of +0.343 Mg C ha−1 a−1 and the IPCC prognosis tool +0.345 Mg C ha−1 a−1. EPIC simulated an average increase of +1.253 Mg C ha−1 a−1 for on average 10.6 years of grassland/fallow establishment compared to an average increase of +1.342 Mg humus-C ha−1 a−1 measured by field measurements and +1.254 Mg C ha−1 a−1 according to the IPCC prognosis tool. The comparison of simulated and measured humus C stocks was r2 ≥ 0.825 for all treatments. However, on some sites deviations between simulated and measured results were considerable. The result for the simulation of yields was similar. In 49% of the cases the simulated yields differed from the surveyed ones by more than 20%. Some explanations could be found by qualitative cause analyses. Yet, for quantitative analyses the available information from farmers was not sufficient. Altogether EPIC is able to represent the expected changes by reduced tillage or grassland/fallow establishment acceptably under central European site conditions of south-western Germany.  相似文献   

11.
Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of -27.3 Tg C) because NBP in the 1980s was very low (-5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2 fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires.  相似文献   

12.
Spatially and temporally distributed information on the sizes of biomass carbon (C) pools (BCPs) and soil C pools (SCPs) is vital for improving our understanding of biosphere-atmosphere C fluxes. Because the sizes of C pools result from the integrated effects of primary production, age-effects, changes in climate, atmospheric CO2 concentration, N deposition, and disturbances, a modeling scheme that interactively considers these processes is important. We used the InTEC model, driven by various spatio-temporal datasets to simulate the long-term C-balance in a boreal landscape in eastern Canada. Our results suggested that in this boreal landscape, mature coniferous stands had stabilized their productivity and fluctuated as a weak C-sink or C-source depending on the interannual variations in hydrometeorological factors. Disturbed deciduous stands were larger C-sinks (NEP2004 = 150 gC m−2 yr−1) than undisturbed coniferous stands (e.g. NEP2004 = 8 gC m−2 yr−1). Wetlands had lower NPP but showed temporally consistent C accumulation patterns. The simulated spatio-temporal patterns of BCPs and SCPs were unique and reflected the integrated effects of climate, plant growth and atmospheric chemistry besides the inherent properties of the C pool themselves. The simulated BCPs and SCPs generally compared well with the biometric estimates (BCPs: r = 0.86, SCPs: r = 0.84). The largest BCP biases were found in recently disturbed stands and the largest SCP biases were seen in locations where moss necro-masses were abundant. Reconstructing C pools and C fluxes in the ecosystem in such a spatio-temporal manner could help reduce the uncertainties in our understanding of terrestrial C-cycle.  相似文献   

13.
Trace elements such as cadmium (Cd) may be inadvertently added to cropland soils through application of fertilizers, irrigation water, and other amendments. These toxic trace elements pose a potentially threat to soil quality and, through the food chain transfer, to human health. A generalized soil trace element mass balance model that accounts for the interactive processes governing the reactions of trace elements in soils, and consequently removed with crop harvest and leaching out of the soil profile with irrigation water was developed in this research. The model conceptually approximates the mechanisms and kinetics of a real field cropland system. The model was used to evaluate the long-term cultivation on distribution of Cd in California croplands. Under typical California cropping practices, Cd added into the soils accumulated primarily in the plow layer while the Cd content below the plow layer was barely affected. After 100 years of continuous cultivation, the soil Cd content of the plow layer increases from the background level 0.22 mg kg−1 to 0.40 mg kg−1. The accumulation of Cd in the plow layer is in proportion to the external inputs and is affected by the soil and plant characteristics, and management practices. The model can be used to evaluate the environmental fates of other toxic element in soils with case specific parameters.  相似文献   

14.
We describe and apply a method of using tree-ring data and an ecosystem model to reconstruct past annual rates of ecosystem production. Annual data on merchantable wood volume increment and mortality obtained by dendrochronological stand reconstruction were used as input to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate net ecosystem production (NEP), net primary production (NPP), and heterotrophic respiration (Rh) annually from 1975 to 2004 at 10 boreal jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. From 1975 (when sites aged 41-60 years) to 2004 (when they aged 70-89 years), all sites were moderate C sinks except during some warmer than average years where estimated Rh increased. Across all sites and years, estimated annual NEP averaged 57 g Cm−2 yr−1 (range −31 to 176 g Cm−2 yr−1), NPP 244 g Cm−2 yr−1 (147-376 g Cm−2 yr−1), and Rh 187 g Cm−2 yr−1 (124-270 g Cm−2 yr−1). Across all sites, NPP was related to stand age and density, which are proxies for successional changes in leaf area. Regionally, warm spring temperature increased NPP and defoliation by jack pine budworm 1 year previously reduced NPP. Our estimates of NPP, Rh, and NEP were plausible when compared to regional eddy covariance and carbon stock measurements. Inter-annual variability in ecosystem productivity contributes uncertainty to inventory-based assessments of regional forest C budgets that use yield curves predicting averaged growth over time. Our method could expand the spatial and temporal coverage of annual forest productivity estimates, providing additional data for the development of empirical models accounting for factors not presently considered by these models.  相似文献   

15.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

16.
Annett Wolf 《Ecological modelling》2011,222(15):2595-2605
It is well known that vegetation dynamics at the catchment scale depends on the prevailing weather and soil moisture conditions. Soil moisture, however, is not equally distributed in space due to differences in topography, weather patterns, soil properties and the type and amount of vegetation cover. To elucidate the complex interaction between vegetation and soil moisture, the dynamic vegetation model LPJ-GUESS (Smith et al., 2001), which provides estimations of vegetation dynamics, but does not consider lateral water fluxes was coupled with the hydrological TOPMODEL (cf. Beven, 2001) in order to be able to evaluate the importance of these lateral fluxes. The new model LG-TM was calibrated and validated in two climatically different mountain catchments. The estimations of runoff were good, when monthly and weekly time scales were considered, although the low flow periods at winter time were somewhat underestimated. The uncertainty in the climate induced change vegetation carbon storage caused by the uncertainty in soil parameters was up to 3-5 kg C m−2 (depending on elevation and catchment), compared to the total change in vegetation carbon storage of 5-9 kg C m−2. Therefore accurate estimates of the parameters influencing the water holding capacity of the soil, for example depth and porosity, are necessary when estimating future changes in vegetation carbon storage. Similarly, changes in plant transpiration due to climatic changes could be almost double as high (88 mm m−2) in the not calibrated model compared to the new model version (ca 50 mm m−2 transpiration change). The uncertainties in these soil properties were found to be more important than the lateral water exchange between grid cells, even in steep topography at least for the temporal and spatial resolution used here.  相似文献   

17.
Boreal forest soils such as those in Sweden contain a large active carbon stock. Hence, a relatively small change in this stock can have a major impact on the Swedish national CO2 balance. Understanding of the uncertainties in the estimations of soil carbon pools is critical for accurately assessing changes in carbon stocks in the national reports to UNFCCC and the Kyoto Protocol. Our objective was to analyse the parameter uncertainties of simulated estimates of the soil organic carbon (SOC) development between 1994 and 2002 in Swedish coniferous forests with the Q model. Both the sensitivity of model parameters and the uncertainties in simulations were assessed. Data of forests with Norway spruce, Scots pine and Lodgepole pine, from the Swedish Forest Soil Inventory (SFSI) were used. Data of 12 Swedish counties were used to calibrate parameter settings; and data from another 11 counties to validate. The “limits of acceptability” within GLUE were set at the 95% confidence interval for the annual, mean measured SOC at county scale. The calibration procedure reduced the parameter uncertainties and reshaped the distributions of the parameters county-specific. The average measured and simulated SOC amounts varied from 60 t C ha−1 in northern to 140 t C ha−1 in the southern Sweden. The calibrated model simulated the soil carbon pool within the limits of acceptability for all calibration counties except for one county during one year. The efficiency of the calibrated model varied strongly; for five out of 12 counties the model estimates agreed well with measurements, for two counties agreement was moderate and for five counties the agreement was poor. The lack of agreement can be explained with the high inter-annual variability of the down-scaled measured SOC estimates and changes in forest areas over time. We conclude that, although we succeed in reducing the uncertainty in the model estimates, calibrating of a regional scale process-oriented model using a national scale dataset is a sensitive balance between introducing and reducing uncertainties. Parameter distributions showed to be scale sensitive and county specific. Further analysis of uncertainties in the methods used for reporting SOC changes to the UNFCCC and Kyoto protocol is recommended.  相似文献   

18.
Optimising the management of invasive plants requires the identification of the population size outcomes for alternative management strategies. Mathematical models can be useful tools for making such management strategy comparisons. In this paper we develop a generic landscape meta-population model and apply it to the weedy grass, Nassella trichotoma, an invasive species occupying approximately 800 land parcels, predominantly pastoral farms, in the Hurunui district, North Canterbury, New Zealand. Empirical evidence reveals that this meta-population is currently stable (at a median density of 6 plants ha−1) under a community strategy requiring manual removal (termed ‘grubbing’) of plants annually from all land parcels. Reduction in population size requires an alternative management strategy. Field data, collected over a 12 year period, were used to provide stochastic parameter values for land parcel size, carrying capacity, rates of local population growth and grubbing.The model reveals that at steady state, the most significant contribution to population growth on a land parcel comes from within the land parcel itself; the expected annual per capita growth on an individual land parcel is 4 orders of magnitude greater than the expected annual contribution from plants arising from other land parcels. This result implies that many of the farms currently supporting N. trichotoma may pose little or no threat to, nor are threatened themselves by, other farms infested by the weed. However, the steady state distribution (of the weed's population density) was sensitive to the spread rate, revealing a need for data on this process. It was also sensitive to how any increase in the grubbing rate is distributed; increasing it via a uniform distribution U(0, 1) where all rates between 0 and 100% year−1 are equally probable did not affect the steady state, whereas increasing the rates via the uniform distribution U(0.25, 0.75) resulted in fewer farms with high population densities. In general the model provides a basis for exploring the effects of a wide range of alternative grubbing strategies on population growth in N. trichotoma.  相似文献   

19.
A mechanistic semi-empirical carbon cycle model of the La Grande reservoir complex in northern Quebec, Canada was conceived in order to investigate the climate impact of such a large alteration of the continental water cycle. The model includes inputs from the drainage basin, organic matter release from flooded soils, CO2 emissions across the water-atmosphere interface and sedimentation. Most input data stems from previous research by our group on those ecosystems. The model includes the seven reservoirs of the La Grande complex and was run for periods of 50 and 100 years. Terrigeneous dissolved, particulate and suspended soil carbon fluxes and concentrations were computed. Over 100 years, 31.3 × 1012 g C are released from flooded soils, equivalent to 28-29% of inputs from the drainage basin. 40-74% of dissolved organic carbon is mineralized. CO2 fluxes over 100 years are 50.5-79.8 × 1012 g C, 46.4-67.9 × 1012 g C more than in the absence of reservoirs. The increase in mineralization of organic matter and in CO2 emissions is a result of the increase in cumulated water residence time due to the creation of the reservoirs. Changes in other carbon sinks and sources likely offset a part of this additional carbon flux to the atmosphere. In the first years following flooding of the reservoir, organic carbon release from flooded soils exceeds CO2 emissions, implying the downstream export of large quantities of eroded soil organic carbon. After this initial period, CO2 emissions are fuelled by organic carbon originating from the drainage basin.  相似文献   

20.
Ecosystems are balanced by nature and each component in the system has a role in the sustenance of other components. A change in one component would invariably have an effect on others. Stomatopods (mantis shrimps) are common and ecologically important predatory crustaceans in tropical marine waters. The ecological role of mantis shrimps and potential impacts of trawling in a marine ecosystem were estimated using Ecopath with Ecosim (EwE) Version 5.0 software, by constructing a mass balanced Ecopath model of Parangipettai (Porto Novo) ecosystem. Based on fisheries information from the region, 17 ecological groups were defined including stomatopods. Both primary and secondary data on biomass, P/B, Q/B and diet composition were used as basic inputs. The mass balanced model gave a total system throughput of 14,756 t km−2 year−1. The gross efficiency of 0.000942 indicated higher contribution of lower food chain groups in the fishery though the mean trophic level was 3.08. The immature and developing stage of the ecosystem was indicated by the ratio of total primary production and total respiration (1.832) and the net system production (2643.30 t km−2 year−1). Key indices (flow to detritus, net efficiency and omnivory index), split mortality rates and mixed trophic impact of different ecological groups were obtained from the model. A flow diagram was constructed to illustrate the trophic interactions, which explained the biomass flows in the ecosystem with reference to stomatopods. Two temporal simulations were made, with 10 year durations in the mass balanced Ecopath model by using ecosim routine incorporated in EwE software. The effect of decrease in biomass of stomatopods in the ecosystem was well defined, in the first run with increase in stomatopod fishing mortality, and the group showed a high positive impact on benthopelagic fish biomass increase (129%). The simulation with increase in trawling efforts resulted in the biomass decline of different ecological groups as elasmobranchs to 1%, stomatopods to 2%, crabs and lobsters to 36%, cephalopods to 63%, mackerel to 78%, and shrimps to 89%. Present study warns stomatopod discards and further increase in trawling efforts in the region and it explained the need for ecosystem based fisheries management practices for the sustainability of marine fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号