首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate determination of the planetary boundary layer (PBL) height (i.e., mixing height (MH)) is critical to properly simulating pollutant levels with the grid-based photochemical models. In this study, the daytime mixing heights based on the parcel and bulk Richardson number methods are compared with those obtained directly from a numerical mesoscale meteorological model in an effort to evaluate the uncertainties in the estimation of the PBL evolution. Mixing heights are estimated from hourly outputs of meteorological variables of the Penn State/NCAR Mesoscale Model Version 3.3 (MM5V3) with two PBL schemes (Blackadar and Gayno-Seaman) during July 1999 over Philadelphia, PA. An analysis of the diurnal variation in the urban PBL and its influence on ground-level ozone (O3) levels is presented in this paper. The results indicate that on average, the MHs determined from the bulk Richardson number were larger than those estimated from the parcel method. The MHs from the MM5V3 output were much smaller than those derived from the parcel and bulk Richardson number methods, especially for the Gayno-Seaman scheme that is based on turbulent kinetic energy. The MH and ground-level O3 concentration have been found to be twice as much on episode days than on non-episode days. The average hourly MH growth rate and O3 tendency (i.e. rate of change in O3) were largest during the morning hours (0700 to 1000 eastern standard time (EST)), suggesting that vertical mixing contributes significantly to the accumulation of ground-level O3 in urban areas in the morning hours.  相似文献   

2.
A study has been conducted over a period of one year on measurements of air pollution in the Shuaiba Industrial Area (SIA) of Kuwait. The study included analysis of pollutant behaviour relative to the wind speed and direction. SIA comprises several large scale industries including three petroleum refineries, two power plants, two fertilizer plants, a cement plant, a chlorine and soda plant, a commercial harbour and two large oil loading terminals. Measurements of 15 parameters have been carried out every 5 minutes using a mobile laboratory fitted with an automatic calibrator and a data storage system. The pollutants studied include methane, non‐methane hydrocarbons (NMHC), carbon monoxide, carbon dioxide, nitrogen oxides (NO, NO2, and NO x ), sulphur dioxide, ozone and suspended dust. Meteorological parameters monitored simultaneously include wind speed and direction, air temperature, relative humidity, solar radiation, and barometric pressure. The air quality data collected using the mobile laboratory have been used to calculate the diurnal and monthly variations in the major primary and secondary pollutants. Distribution levels of these pollutants relative to wind direction and speed have also been used in the analysis. The results show large diurnal variations in some pollutant concentrations. Generally, two types of concentration variations have been found, depending on whether the species is a primary or a secondary pollutant. Diurnal variations with two maxima were observed in the concentrations of primary pollutants including NO, SO2, NMHC, CO and suspended dust, whereas a single maximum was observed for secondary pollutants such as O3and NO2. The monthly variations of SO2and NO x showed maximum values during the warm months. However, ozone showed a quite marked seasonal variation with maxima during spring and late summer and a minimum during the early summer. The results also indicated a common source for NO x , SO2, NMHC, CO and suspended dust to the North‐West (NW) of the monitoring station. Moreover for NO x and SO2, another less significant source is to the South‐South‐West (SSW) and South‐West (SW) of the monitoring station.  相似文献   

3.
This paper examines the effects of two different planetary boundary-layer (PBL) parameterization schemes – Blackadar and Gayno–Seaman – on the predicted ozone (O3) concentration fields using the MM5 (Version 3.3) meteorological model and the MODELS-3 photochemical model. The meteorological fields obtained from the two boundary-layer schemes have been used to drive the photochemical model to simulate O3 concentrations in the northeastern United States for a three-day O3 episodic period. In addition to large differences in the predicted O3 levels at individual grid cells, the simulated daily maximum 1-h O3 concentrations appear at different regions of the modeling domain in these simulations, due to the differences in the vertical exchange formulations in these two PBL schemes. Using process analysis, we compared the differences between the different simulations in terms of the relative importance of chemical and physical processes to O3 formation and destruction over the diurnal cycle. Finally, examination of the photochemical model's response to reductions in emissions reveals that the choice of equally valid boundary-layer parameterizations can significantly influence the efficacy of emission control strategies.  相似文献   

4.
Impact of consistent boundary layer mixing approaches between NAM and CMAQ   总被引:1,自引:0,他引:1  
Discrepancies in grid structure, dynamics and physics packages in the offline coupled NWS/NCEP NAM meteorological model with the U.S. Environmental Protection Agency Community Multiscale Air Quality (CMAQ) model can give rise to inconsistencies. This study investigates the use of three vertical mixing schemes to drive chemistry tracers in the National Air Quality Forecast Capability (NAQFC). The three schemes evaluated in this study represent various degrees of coupling to improve the commonality in turbulence parameterization between the meteorological and chemistry models. The methods tested include: (1) using NAM predicted TKE-based planetary boundary height, h, as the prime parameter to derive CMAQ vertical diffusivity; (2) using the NAM mixed layer depth to determine h and then proceeding as in (1); and (3) using NAM predicted vertical diffusivity directly to parameterize turbulence mixing within CMAQ. A two week period with elevated surface O3 concentrations during the summer 2006 has been selected to test these schemes in a sensitivity study. The study results are verified and evaluated using the EPA AIRNow monitoring network and other ozonesonde data. The third method is preferred a priori as it represents the tightest coupling option studied in this work for turbulent mixing processes between the meteorological and air quality models. It was found to accurately reproduce the upper bounds of turbulent mixing and provide the best agreement between predicted h and ozonesonde observed relative humidity profile inferred h for sites investigated in this study. However, this did not translate into the best agreement in surface O3 concentrations. Overall verification results during the test period of two weeks in August 2006, did not show superiority of this method over the other 2 methods in all regions of the continental U.S. Further efforts in model improvement for the parameterizations of turbulent mixing and other surface O3 forecast related processes are warranted.  相似文献   

5.
Surface O3 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NO x -VOC-sensitivity regimes complicates the control-decision making. In this paper, the indicator method was used to establish the relationship between O3 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NO y , H2O2/ HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z , were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO x -sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H2O2/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were able to identify more than 95% of VOC- and NO x -sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NO z were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.
  相似文献   

6.
This article assesses the air pollution data from two monitoring stations in Kuwait. The measurements cover major pollutants, i.e., CO, CO2, methanated and non-methanated hydrocarbons, NO x , SO2, O3, and particulate matter (PM10). The data also includes meteorological parameters, i.e., solar intensity, temperature, wind speed, and wind direction, and has been collected over a period 4 years, from 2001 to 2004. Data analysis includes the assessment of annual hourly averages and 1-h maxima. Typical pollutant concentration trends, similar to those previously reported for Kuwait and for other locations around the world, are observed except for particulate matter measurements, which have higher values because of proximity to the desert. Emissions of nitrogen oxides show a consistent increase over the years. This is caused by the increase in the number of motor vehicles and the expansion in power generation and industrial activities. The data collected is a subset of the air quality criteria, as defined by the US EPA (United States Environmental Protection Agency).  相似文献   

7.
This paper investigates the effects of vertical eddy diffusivities derived from the 3 different planetary boundary layer (PBL) schemes on predictions of chemical components in the troposphere of East Asia. Three PBL schemes were incorporated into a regional air quality model (RAQM) to represent vertical mixing process and sensitivity simulations were conducted with the three schemes while other options are identical. At altitudes <2km, all schemes exhibit similar skill for predicting SO2 and O3, but more difference in the predicted NOx concentration. The Gayno–Seaman scheme produces the smallest vertical eddy diffusivity (Kz) among all schemes, leading to higher SO2 and NOx concentrations near the surface than that from the other 2 schemes. However, the effect of vertical mixing on O3 concentration is complex and varies spatially due to chemistry. The Gayno–Seaman scheme predicts lower O3 concentrations than the other two schemes in the parts of northern China (generally VOC-limited) and higher ones in most parts of southern China (NOx-limited). The Byun and Dennis scheme produces the largest mixing depth in the daytime, which bring more NOx into upper levels, and the mixing depth predicted by the Gayno–Seaman scheme is the smallest, leading to higher NOx and lower O3 concentrations near the surface over intensive emission regions.  相似文献   

8.
The influence of different concentrations of ozone under different light intensities on young trees of European beech (Fagus sylvatica L.) is studied. Young beeches were exposed continuously for 5 months in fumigation chambers, located outdoors, with 131±30/μg/m3O3, and for 2 months in fumigation chambers, located in air‐conditioned greenhoouses, with 100±10, 200±20 and 300±30/μg/m3O3, respectively. The observed symptoms point towards an increased xeromorphism in beech leaves, positively influenced by high light intensities. Ozone‐induced water stress may be the cause of xeromorphic tissue changes. On the ultrastructural level chloroplasts have become senescent.  相似文献   

9.
The Tropospheric Emissions Spectrometer (TES) aboard the National Aeronautics and Space Administration’s (NASA’s) Aura satellite launched in July 2004 is the first satellite instrument to provide simultaneous retrievals of ozone (O3) and carbon monoxide (CO) throughout the Earth’s lower atmosphere. This paper briefly reviews the TES instrument, the retrieval of O3 and CO profiles, and the validation of the retrievals. The applications of TES O3 and CO products include mapping the vertical and horizontal distribution of tropospheric O3 and CO and their correlations, examining the regional and continental outflow, and analyzing the variability of the two species associated with certain weather and climatic conditions, such as El Niño and the Asian monsoon. TES retrievals of O3 and CO offer an important new source of satellite data over China with good spatial and temporal coverage that can provide evaluation and constraints on the performance of chemical transport models in simulating the general features of ozone pollution over China. Special observations have been conducted and requests may be submitted to the TES team to make geographically focused observations of O3 and CO over China.  相似文献   

10.
O3对水稻叶片氮代谢、脯氨酸和谷胱甘肽含量的影响   总被引:2,自引:0,他引:2  
臭氧(O3)被认为是重要的气污染物之一,水稻又是主要的粮食作物,因而准确地评估O3浓度升高对水稻生长发育的影响具有十分重要的意义。采用开顶式气室法模拟研究了O3对水稻叶片可见伤害症状、氮代谢、脯氨酸和谷胱甘肽含量的影响。结果显示,O3污染胁迫会导致水稻叶片产生明显的伤害症状,具体表现为:老叶叶鞘褪绿,有褐斑,直至完全干枯;稻穗小且黄化,籽粒不饱满;水稻成熟期提前等。O3浓度升高对水稻叶片的硝酸还原酶活性有显著影响。当O3浓度为40、80和120nL.L-1时,水稻叶片硝酸还原酶活性与对照组相比均降低,其中,分蘖期分别降低了25.3%、67.4%和86.3%;拔节期分别降低了57.4%、75.7%和97.8%;抽穗期分别降低了91.0%、97.2%和99.3%;乳熟期分别降低了89.5%、89.5%和96.7%。水稻叶片铵态氮和硝态氮含量随着O3浓度的升高而显著地降低,例如当O3浓度为40、80和120nL.L-1时,与对照相比,水稻叶片硝态氮含量分别降低46.3%、52.7%和65.7%,铵态氮含量分别降低6.5%、12.9%和43.4%。O3污染胁迫下水稻叶片脯氨酸含量在不同生长期变化不同,分蘖期、拔节期和抽穗期脯氨酸含量在40nL.L-1浓度O3熏蒸下急剧地提高,但是随着O3浓度的增加,脯氨酸含量又不断地降低。在水稻乳熟期,脯氨酸含量均随着O3浓度的增加而显著地下降。O3污染胁迫导致水稻叶片还原型谷胱甘肽(GSH)含量显著低于对照组,而氧化型谷胱甘肽(GSSG)含量显著高于对照组。当O3浓度为40、80和120nL.L-1时,乳熟期水稻叶片GSH含量分别比对照组降低68.7%、80.2%和78.2%,GSSG含量分别比对照提高494.4%、527.2%和439.8%。研究表明,O3污染胁迫对水稻叶片氮代谢和抗氧化系统产生了极显著的影响。  相似文献   

11.
天津臭氧浓度与气象因素的相关性及其预测方法   总被引:6,自引:0,他引:6  
气象因素在影响夏季臭氧浓度水平和变化特征方面扮演着重要作用.通过对2008年夏季天津地面臭氧体积浓度和气象因素的相关分析,揭示高浓度臭氧发生时的典型气象特征,并初步建立了预测地面臭氧浓度的气象学方法.结果表明:影响臭氧浓度的主要气象因素是气温、相对湿度和风速、风向,当14时气温大于30℃,相对湿度低于60%,风向为偏西或偏南时,高浓度臭氧的发生概率较高.采用14时气温、相对湿度和风速等气象参数拟合臭氧体积浓度,效果良好.  相似文献   

12.
The compilation of ozone data for the federal states of Hesse and Northrhine-Westphalia (NRW) in Germany indicated that the concentration of ozone level slightly decreased during the years 1990–1998. The average concentration of ozone over forest areas is significantly higher than over cities. Only the maximum figures in the years approached one another. However, values passing the legal thresholds (180 μg ozone/m3) were two to three-fold higher over forests than over cities. The ozone concentration in air is inversely proportional to the traffic density. It is suggested that the lower NOx concentration over the forest than over cities is involved in the maintenance of the higher ozone-concentration over forest areas. In the cities, the ozone is reduced by NO to almost zero at night, whereas it is reduced by only about 50% over forests with lower NO concentrations. This reduction is only partially compensated in connection with the photolysis of NO2 and the subsequent oxidation of O2 to O3 during the day. The ozone situation is principally the same in the federal states of Hesse and Northrhine-Westphalia.  相似文献   

13.
利用2009—2010年福州市近地层臭氧连续观测资料,并结合气象资料分析不同天气型对臭氧浓度变化的影响,以及臭氧浓度与气象要素的相关性。结果表明:在高压后部、地面倒槽等6种天气型影响下,福州市臭氧浓度值较高;在低涡锋面、台风(热带辐合带)等4种天气型影响下,臭氧浓度值较低。导致福州市臭氧平均浓度值最高的天气型是台风(热带辐合带)外围,最低的是低涡锋面系统。高压后部、地面倒槽和锋前暖区等强暖性、且非常不利于污染物扩散的天气型易造成臭氧浓度超标。臭氧浓度与气象要素关系密切,与温度、日照、太阳辐射显著正相关,与云量、相对湿度、降水量显著负相关,受偏南和偏东风影响,平均风速较大时,臭氧浓度较高,在SSE方位上臭氧小时浓度超标率最高。  相似文献   

14.
臭氧污染胁迫下植物的抗氧化系统调节机制   总被引:1,自引:0,他引:1  
工业和农业的快速发展导致近地层O3浓度不断提高,这对陆地生态系统的动物、植物、微生物和人类健康造成伤害。O3对植物的影响尤其是对农作物的影响将关系到世界粮食的安全生产。O3污染胁迫可诱导植物产生活性氧物质,破坏植物的膜系统,影响植物的光合作用等正常生理功能。植物在自然适应过程中,可形成一套抗氧化机制来缓解O3胁迫伤害。综述了国内外近年来有关O3胁迫下植物抗氧化系统调节机制的研究进展,包括植物通过调节体内的抗氧化酶活性和非酶类物质含量来缓解O3对植物伤害的机制。O3污染胁迫下植物可调节其叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和单脱氢抗坏血酸还原酶(MDAR)等抗氧化酶的活性。抗坏血酸(AsA)、类胡萝卜素(Car)和谷胱甘肽(GSH)等非酶类物质在清除O3胁迫产生活性氧方面具有重要的作用。另外,根据目前的研究进展,提出了一些需要继续深入探讨的问题。  相似文献   

15.
Abstract

In this paper, three sensitivity studies are designed to analyze the effect of the NMHC (Non-Methane HydroCarbon) composition, the aerosol back-scattering and the high chimney NO x emission to the photochemical prodution of ozone by using a one-dimensional photochemistry-diffusion model under a favourable meteorological condition. Measurements of the NMHC composition in Taipei indicated that the percentage of iso-butene, cis-2-butene, trans-2-butene and benzene in a unit volume was much higher than of those observed in other major cities. the high ratio of benzene was directly linked to its high percentage in gasoline. As to the unusually high amount of iso-butene, cis-2-butene and trans-2-butene, more researches are needed to identify their source. Concerns are raised as to how productive is NMHC composition is to the photochemical production of the surface ozone. A rough estimate shows that the total reactivity of the Taipei NMHC composition is about 1.21 × 10?9 cm3 s?1 which is 1.6 times that of the Los Angeles (LA) NMHC composition, while the simulated noon peak will be different by 28 ppbv, i.e. 18% more than that simulated with a LA composition.

Meanwhile, high aerosol loading is a serious problem in Taipei. the attenuation of the UV radiation by aerosols cannot be ignored. A numerical simulation shows that the noon ozone level will decrease from 178 to 141ppbv, i. e. about 21% reduction, with deterioration of the visual range from 85 to 5 km.

In the southern Taiwan, industry parks are mixed with the populated Kaohsiung city, hence the large emission of NO x from high chimneys cannot be ignored. in this study, NO x is assumed to be emitted in the layer between 235–460 m high with an emission rate of 0.05 or 0.145 ppbv/sec. the results show that the NO x emitted from the elevated stack lead to a considerable reduction of surface ozone. Such conclusion is obtained due to the fact that a one-dimensional model is used in this paper. Whereas, if a three-dimensional regional model was used, then a higher productivity of ozone downstream would be simulated.  相似文献   

16.
Field measurements of atmospheric mercury and related species were carried out during an intensive cruise campaign performed over the Adriatic sea from October 26th to November 12th, 2004 on board the R/V Urania. Hg0 ranged between 0.8 and 3.3 ng/m3 with an average of 1.6 ± 0.4 ng/m3 over the entire period. Hg(II) concentrations ranged from 0.1 to 62.8 pg/m3 with an average of 6.7 ± 11.7 pg/m3 whereas Hg-p levels were in a range of 0.04 and 51 pg/m3 with an average of 4.5 ± 8 pg/m3. Higher Hg0 and Hg-p concentrations were observed in the Gulf of Venice and Gulf of Trieste due primarily to air masses transported from the mainland reflecting the contribution from anthropogenic sources. In contrast, higher Hg(II) concentrations observed during the first period of the cruise campaign were likely due to the occurrence of photo-oxidants production which are the main players of the gas phase oxidation of to Hg(II)(g). These findings have been confirmed by the backward trajectories analysis of air masses crossing the studied area during selected days.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are complex organic compounds which are identified as significant carcinogenic to human health. PAHs (mainly in particle phase) are susceptible to atmospheric oxidant gases, especially ozone, nitrogen oxides (NOx), hydroxyl radical (OH), and could be degraded on filters during sampling process, leading to an underestimation of ambient PAH concentrations. The goal of this work was to investigate particle associated PAHs sampling artifacts caused by ozone in summer of Beijing. Comparative sampling systems were operated simultaneously during the whole campaign, one with activated carbon ozone denuder, the other being set as conventional sampling system. Activated carbon denuder was testified to be highly efficient to eliminate ozone from air stream. In general, nine particle-bound PAHs observed from conventional sampler were all lower than those from ozone denuder system. The total PAHs (particle phase) concentration was averagely underestimated by 35.9% in conventional sampling procedure. Benzo[a]pyrene (BaP) had the highest percentage of mass loss. founded to have influences Ambient temperature was on PAHs sampling artifacts. High temperature can increase loss of particle associated PAHs during sampling.  相似文献   

18.
The UN ECE Göteborg Protocol from 1. December 1999 (c.f.http://www.unece.org und SENGER, 2000) to abate acidification, eutrophication and ground-level ozone demands distinct reductions of air pollutants in different countries. In this contribution the reduction of different components of air pollutants between the years 1990 and 2010 were estimated for the German federal states of Hesse and North Rhine-Westphalia. The estimated reduction for NOx, SO2 and NM-VOC, and CO meet the demands set up by the UN ECE Göteborg Protocol. For O3 a reduction could only be predicted for rural areas and, for CO2, a steady increase in its global concentration has to be assumed.  相似文献   

19.
Many regions in China experience air pollution episodes because of the rapid urbanization and industrialization over the past decades. Here we analyzed the effect of emission controls implemented during the G-20 2016 Hangzhou summit on air quality. Emission controls included a forced closure of highly polluting industries, and limiting traffic and construction emissions in the cities and surroundings. Particles with aerodynamic diameter lower than 2.5 μm (PM2.5) and ozone (O3) were measured. We also simulated air quality using a forecast system consisting of the two-way coupled Weather Research and Forecast and Community Multi-scale Air Quality (WRF-CMAQ) model. Results show PM2.5 and ozone levels in Hangzhou during the G-20 Summit were considerably lower than previous to the G-20 Summit. The predicted concentrations of ozone were reduced by 25.4%, whereas the predicted concentrations of PM2.5 were reduced by 56%.  相似文献   

20.
南京北郊大气臭氧浓度变化特征   总被引:33,自引:0,他引:33  
安俊琳  杭一纤  朱彬  王东东 《生态环境》2010,26(6):1383-1386
以南京北郊大气中O3质量浓度观测资料为基础,分析了O3变化特征和气象要素对其影响程度。结果表明:大气O3日均质量浓度平均为65.8μg·m-3。O3质量浓度最大值出现在午后15时左右,O3质量浓度日最大值在春季最大,而冬季最小。白天工作日O3质量浓度要高于周末,而夜间两者差异不大。气温,日照时数和降水量是影响南京大气O3质量浓度的重要因素。全年中5月份高日照时数和较低的降水量导致南京出现O3高值。在偏南气流作用下,O3质量浓度偏高。由气象要素得到的O3日均质量浓度和O3日最高质量浓度回归方程相关系数分别为0.61和0.71。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号