首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80 % of total As.  相似文献   

2.
The Elqui watershed (northern Chile) constitutes a highly contaminated river system, with arsenic exceeding by up to three orders of magnitude the average for river waters. There are three main reasons that explain this contamination: (1) the regional geology and hydrothermal (mineralizing) processes that developed in this realm during Miocene time; (2) the later unroofing–erosion–oxidation–leaching of As–Cu rich sulfide ores, a process that have been taking place for at least 10,000 years; and last but not least (3) mining activities at the high-altitude (>4000 m above sea level) Au–Cu–As El Indio mine, from the late 1970s onwards. The El Indio mineral deposit hosted large veins of massive sulfides, including the important presence of enargite (Cu3AsS4). The continuous natural erosion of these veins and their host rocks (also rich in As and Cu) during Holocene time, led to important and widespread metal dispersion along the river system. During the studied pre mining period (1975–1977), the high altitude river Toro waters already showed very large As concentrations (0.36–0.52 mg l−1). The initiation of full scale mining at El Indio (1980 onwards) led to an increase of these values, reaching a concentration of 1.51 mg l−1 As in 1995. During the same year other rivers of the watershed reached peak As concentrations of 0.33 (Turbio) and 0.11 mg l−1 (Elqui). These figures largely exceed the USEPA regulations for drinking water (0.01 mg l−1 As), and about 10% of the total As data from the river Elqui (and 70% from the river Turbio) are above the maximum level allowed by the Chilean law for irrigation water (0.1 mg l−1 As).  相似文献   

3.
Seasonal differences in the concentration and biochemical composition of seston have been assessed for the first time in the Humboldt Current System off northern Chile (21°S). The study comprised four seasonal surveys in the Bay of Chipana, including the summer and winter of 2006 and 2007, when El Niño 2006 and La Niña 2007 developed. Protein, lipid, carbohydrate and biogenic silica contents were measured in samples collected at four selected depths. The highest protein, lipid and carbohydrate concentrations were found at the fluorescence maximum (between 10 and 15 m depth), whereas the highest biogenic silica concentration was found 1 m above the seabed. When El Niño started developing, every variable showed low values throughout the water column; however, the lowest values were found when La Niña conditions dominated, together with low oxygen concentrations. Samples collected within the oxygen minimum zone (65 m depth) showed the lowest values for the water column and the lowest seasonal variations. After the evident decline coincident with El Niño 2006, the abundance and biochemical quality (high protein and lipid contents) of seston recovered earlier in the surface layer (upper 15 m) than at other depths.  相似文献   

4.
由于重金属的毒理性及其对水生生态系统的重要影响,水生环境的重金属污染已成为全世界关注的问题.渭河是黄河的第一大支流,近年来随着沿岸社会经济的发展,渭河的水质受到严重的威胁,但是对渭河流域地表水重金属的污染状况缺乏全面评估.以渭河流域关中段为研究区域,采集了该流域35个地表水样品,检测了12种重金属元素(Cr、Mn、Fe...  相似文献   

5.
调查了拟建清平水库周围磷矿所排废渣的情况,弄清了废渣堆放量及分布。绵远河4个断面连续5个月水质监测的数据表明了该地废渣降雨淋溶对河流水质带来了严重的危害。河流沉积物分析表明,由于受磷矿渣的影响,沉积物中Cd、Pb、P、F超标严重,总磷含量平均高达9892mg/kg。若不控制磷矿废渣,新建的清平水库必将发生富营养化。  相似文献   

6.
•Strong ENSO influence on AOD is found in southern China region. •Low AOD occurs in El Niño but high AOD occurs in La Niña events in southern China. •Angstrom exponent anomalies reveals the circulation pattern during each ENSO phase. •ENSO exerts large influence (70.5%) on annual variations of AOD during 2002–2020. •Change of anthropogenic emissions is the dominant driver for AOD trend (2002–2020). Previous studies demonstrated that the El Niño–Southern Oscillation (ENSO) could modulate regional climate thus influencing air quality in the low-middle latitude regions like southern China. However, such influence has not been well evaluated at a long-term historical scale. To filling the gap, this study investigated two-decade (2002 to 2020) aerosol concentration and particle size in southern China during the whole dynamic development of ENSO phases. Results suggest strong positive correlations between aerosol optical depth (AOD) and ENSO phases, as low AOD occurred during El Niño while high AOD occurred during La Niña event. Such correlations are mainly attributed to the variation of atmospheric circulation and precipitation during corresponding ENSO phase. Analysis of the angstrom exponent (AE) anomalies further confirmed the circulation pattern, as negative AE anomalies is pronounced in El Niño indicating the enhanced transport of sea salt aerosols from the South China Sea, while the La Niña event exhibits positive AE anomalies which can be attributed to the enhanced import of northern fine anthropogenic aerosols. This study further quantified the AOD variation attributed to changes in ENSO phases and anthropogenic emissions. Results suggest that the long-term AOD variation from 2002 to 2020 in southern China is mostly driven (by 64.2%) by the change of anthropogenic emissions from 2002 to 2020. However, the ENSO presents dominant influence (70.5%) on year-to-year variations of AOD during 2002–2020, implying the importance of ENSO on varying aerosol concentration in a short-term period.  相似文献   

7.
The many abandoned base metal mines of the mid-Wales ore field are sources of extensive pollution. Some of the mineralised veins contain large amounts of pyrite and marcasite and oxidative weathering of these produces sulphuric acid resulting in very acidic mine drainage waters. In addition, the spoil tips associated with these mines can contain abundant iron sulphides. Drainage waters from these sources have pH values as low as 2.6 and are heavily contaminated with metals such as Al, Zn, Cd and Ni.Two of the main rivers of the area, the Rheidol and Ystwyth, intercept heavily contaminated acidic drainage which has a marked effect on water quality. The Rheidol contains over 100 g L–1 Zn for 16 km downstream of the acid water influx. This level is over three times the recommended EEC limit for Zn in salmonoid waters of low hardness.  相似文献   

8.
为查明沙颍河沈丘段底泥、土壤中砷(As)和重金属污染状况及其潜在生态风险,对底泥和土壤样品中的砷(As)、铬(Cr)、汞(Hg)、镉(Cd)和铅(Pb)的含量水平进行测定,并进行潜在生态风险指数计算。结果表明,沙颍河沈丘段底泥中As含量为9.206~11.641mg·kg-1,距河5km的白果村农田土壤中As含量为8.52~80.31mg·kg-1,超标率达到57.8%,Cr、Hg、Cd和Pb的超标率分别达到32.8%、59.4%、67.2%和39.1%。沙颍河沈丘段底泥和附近村庄农田土壤中As和4种重金属的总潜在生态风险为中等生态风险,主要来源于Hg和As。  相似文献   

9.
Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.  相似文献   

10.
This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead–zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002–2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 μg L−1, copper (Cu) 616 μg L−1, cadmium (Cd) 223 μg L−1 and lead (Pb) 10,590 μg L−1, which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6–174 μg L−1), Cd (1–46 μg L−1) and Pb (2–26 μg L−1). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO4), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO4 increased while those of bicarbonate (HCO3) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758–10,550 μg L−1) near the mine, which far exceeded the Korean standard of 1000 μg L−1 for drinking water. The decreases in the heavy metals contents in the groundwaters associated with reduced rainfall were quite different from the increases observed for the stream waters, which is not clearly understood at this time and warrants further investigation.  相似文献   

11.
As a major biotic component of many lotic ecosystems, macrophytes consist a major component of running waters are often used as indicators within the European Water Framework Directive (WFD) to establish ecological quality. In this study, we investigated macrophyte community structure (e.g. composition, abundance and diversity) in Ceyhan River Basin located in the Southeastern Anatolian Region in Turkey. Data was collected during 2014–2015 from river sites located throughout the basin to evaluate the relationship between aquatic vegetation and river physico-chemical factors. The ecological status of the river basin was also calculated based on Macrophyte Biological Index for River (IBMR). In total, 33 macrophyta taxa were observed. According to their biological classification (life form), filamentous algae (FA), free floating (FF), floating leaved (FL) and submersed (S) macrophytes reached their maximum abundance value in summer, while emergent (E) macrophytes were at their maximum abundance in both summer and autumn. The ecological status of the Ceyhan River basin ranged from moderate to bad. The values found are reasonably comparable to IBMR scores recorded in rivers of other Mediterranean countries. IBMR index may be suitable to some extent to establish a basis for ecological quality assessment in Turkish River systems.  相似文献   

12.
The objective of this study was to assess the bulk chemical composition as well as the extent and severity of heavy metal contamination in the paddy soil of Kočani Field (eastern Macedonia). The results revealed that the paddy soil of the western part of Kočani Field is severely contaminated with Pb, Zn, As and Cd in the vicinity of the Zletovska River due to irrigation with riverine water that is severely affected by acid mine and tailing effluents from the Pb–Zn mine in Zletovo. The detected total concentrations of these metals are far above the threshold values considered to be phytotoxically excessive for surface soil. The paddy soil in the vicinity of the Zletovska River was also found to exhibit elevated levels of Ba, Th, U, V, W, Mo, Cu, Sb, Bi, Ag, Au, Hg and Tl, with concentrations above their generally accepted median concentration values obtained during this study. A correlation matrix revealed that the Mn and Fe oxides/hydroxides are the most important carrier phase for several trace elements, with the exception of rare earth elements (REEs). These also represent a major sink for the observed heavy metal pollution of the soil. REEs are mostly associated with two phases: light (L)REEs are bound to K-Al, while heavy (H)REEs are bound to Mg-bearing minerals. Although there is no direct evidence of a health risk, the paddy soil in the vicinity of Zletovska River needs further investigation and an assessment should be made of its suitability for agricultural use, particularly in view of the highly elevated concentrations of Pb, Zn, As and Cd.  相似文献   

13.

Aljustrel mining area (South Portugal) is a part of the Iberian Pyrite Belt and encloses six sulfide mineral masses. This mine is classified of high environmental risk due to the large tailings’ volume and acid mine drainage (AMD)-affected waters generated by sulfides’ oxidation. The use of biological indicators (e.g., diatoms) revealed to be an important tool to address the degree of AMD contamination in waters. Multivariate analysis has been used as a relevant approach for the characterization of AMD processes. Cluster analysis was used to integrate the significant amount and diversity of variables (physicochemical and biological), discriminating the different types of waters, characterized by the high complexity occurring in this region. The distinction of two main marked phenomena was achieved: (1) the circumneutral-Na-Cl water type (sites DA, PF, BX, BF, RO, CB), expressing the geological contributions of the Cenozoic sediments of Sado river basin, with high diatom diversity (predominating brackish diatoms as Entomoneis alata); and (2) the acid–metal-sulfated water type (sites BM, JU, RJ, AA, MR, BE, PC, AF), reflecting both the AMD contamination and the dissolution of minerals (e.g., silicates) from the hosting rocks, potentiated by the extremely low pH. This last group of sites showed lower diatom diversity but with typical diatoms from acid- and metal-contaminated waters (e.g., Pinnularia aljustrelica). In addition to these two water types, this hierarchical classification method also allowed to distinguish individual cases in subclusters, for example, treated dams (DC, DD), with alkaline substances (lime/limestone), that changed the physicochemical dynamics of the contaminated waters.

  相似文献   

14.
随着广州市截污工程的实施,珠江(广州河段)外源污染得到有效控制后,沉积物内源污染将成为影响河流水质的重要因素。在珠江(广州河段)表层沉积物中8种重金属质量分数监测的基础上,对该河段沉积物中重金属的沿程分布特征和横向分布特征进行了全面的分析,并对所测8种重金属之间的相关性进行了研究。结果表明:从沿程分布来看,这8种污染元素的分布特征基本相似,元素的高值区和低值区大致吻合。从横向分布来看,绝大多数污染物在一个断面的最高值和最低值出现的点位基本上是重合的,各种污染物质量分数的最高值绝大部分出现在靠近岸边的点位,并且大部分集中于左岸。而最低值出现在河道中间的比例较高。在所测定的8种元素中,除了Hg和As之外,其它各种元素之间均呈现较明显的正相关关系,特别是Cr和Cd、Cu和Cd、Cr和Cu、Cr和Ni之间的相关性显著。  相似文献   

15.
Variable ocean conditions can greatly impact prey assemblages and predator foraging in marine ecosystems. Our goal was to better understand how a change in ocean conditions influenced dietary niche overlap among a suite of midtrophic-level predators. We examined the diets of three fishes and one seabird off central Oregon during two boreal summer upwelling periods with contrasting El Niño (2010) and La Niña (2011) conditions. We found greater niche specialization during El Niño and increased niche overlap during La Niña in both the nekton and micronekton diet components, especially in the larger, more offshore predators. However, only the two smaller, more nearshore predators exhibited interannual variation in diet composition. Concurrent trawl surveys confirmed that changes in components of predator diets reflected changes in the prey community. Using multiple predators across diverse taxa and life histories provided a comprehensive understanding of food-web dynamics during changing ocean conditions.  相似文献   

16.
We tested for unintended mercury contamination problems associated with estuarine floodplain restoration projects of the Louisiana coastal zone, USA. Barataria Bay and Breton Sound are two neighboring deltaic estuaries that were isolated by levees from the Mississippi River about 100 years ago. These estuaries recently have been reconnected to the nutrient-rich Mississippi River, starting major river diversion (input) flows in 1991 for Breton Sound and in 2004 for Barataria Bay. We collected > 2100 fish over five years from 20 stations in these estuaries to test two hypotheses about Hg bioaccumulation: (H1) Background Hg bioaccumulation in fish would be highest in low-salinity upper reaches of estuaries, and (H2) recent river inputs to these upper estuarine areas would increase Hg bioaccumulation in fish food webs. For H1, we surveyed fish Hg concentrations at several stations along a salinity gradient in Barataria Bay in 2003-2004, a time when this estuary lacked strong river inputs. Results showed that average Hg concentrations in fish communities were lowest (150 ng/g dry mass) in higher salinity areas and -2.4x higher (350 ng/g) in low-salinity oligohaline and freshwater upper reaches of the estuary. For H2, we tested for enhanced Hg bioaccumulation following diversion onset in both estuaries. Fish communities from Breton Sound that had long-term (> 10 years) diversion inputs had -1.7x higher average Hg contents of 610 ng/g Hg vs. 350 ng/g background values. Shorter-term diversion inputs over 2-3 years in upper Barataria Bay did not result in strong Hg enrichments or stable C isotope increases seen in Breton Sound, even though N and S stable-isotope values indicated strong river inputs in both estuaries. It may be that epiphyte communities on abundant submerged aquatic vegetation (SAV) are important hotspots for Hg cycling in these estuaries, and observed lesser development of these epiphyte communities in upper Barataria Bay during the first years of diversion inputs may account for the lessened Hg bioaccumulation in fish. A management consideration from this study is that river restoration projects may unintentionally fertilize SAV and epiphyte-based food webs, leading to higher Hg bioaccumulation in river-impacted floodplains and their food webs.  相似文献   

17.
The study of gold sites in the Migori Gold Belt, Kenya, revealed that the concentrations of heavy metals, mainly Hg, Pb and As are above acceptable levels. Tailings at the panning sites recorded values of 6.5–510 mg kg–1 Pb, 0.06–76.0 mg kg–1 As and 0.46–1920 mg kg–1 Hg. Stream sediments had values of 3.0–11075 mg kg–1 Pb, 0.014–1.87 mg kg–1 As and 0.28–348 mg kg–1 Hg. The highest metal contamination was recorded in sediments from the Macalder stream (11075 mg kg–1 Pb), Nairobi mine tailings (76.0 mg kg–1 As) and Mickey tailings (1920 mg kg–1 Hg). Mercury has a long residence time in the environment and this makes its emissions from artisan mining a threat to health. Inhaling large amounts of siliceous dust, careless handling of mercury during gold panning and Au/Hg amalgam processing, existence of water logged pits and trenches; and large number of miners sharing poor quality air in the mines are the major causes of health hazards among miners. The amount of mercury used by miners for gold amalgamation during peak mining periods varies from 150 to 200 kg per month. Out of this, about 40% are lost during panning and 60% lost during heating Au/Hg amalgam. The use of pressure burners to weaken the reef is a deadly mining procedure as hot particles of Pb, As and other sulphide minerals burn the body. Burns become septic. This, apparently, leads to death within 2–3 years. On-site training of miners on safe mining practices met with enthusiasm and acceptance. The use of dust masks, air filters and heavy chemical gloves during mining and mineral processing were readily accepted. Miners were thus advised to purchase such protective gear, and to continue using them for the sake of their health. The miners' workshop, which was held at the end of the project is likely to bear fruit. The Migori District Commissioner and other Government officials, including medical officers attended this workshop. As a result of this, the Government is seriously considering setting up a clinic at Masara, which is one of the mining centres in the district. This would improve the health of the mining community.  相似文献   

18.
The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10–100 μm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L−1 HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone.  相似文献   

19.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   

20.
When exposed to the weather, sulfidic minerals release sulfuric acid, metals and metalloids. This leachate can devastate nearby ecosystems for centuries. This article reports a novel barrier system based on green liquor dregs that reduces acid generation, is inexpensive, and is practical for implementation at operational mines. Two waste rock piles were constructed. One pile was left open to the atmosphere, and the other was sealed with green liquor dregs and partially capped with a polyethylene liner. This test was designed in collaboration with personnel from Boliden Mineral AB, a Swedish mining company in order to ensure that the results would be practical to implement at an operational mine. Leachate flow and chemistry were monitored in both piles over a period of 12 months. Effluent volume was 40 % lower in the test pile, while thirteen of the twenty elements assessed showed average concentrations that were 50 % lower in the test pile than in the control pile. For the most environmentally toxic elements As, Cd, Pb and Hg, reductions were even more significant, ranging between 67 and 87 %. These positive results are hypothesized to be primarily due to the chemical and physical characteristics of the green liquor dregs. The novelty of this result is that it is the first barrier system that fulfills the multiple needs of the Swedish mining industry: It is effective in reducing acid mine drainage while remaining both economical and practical. No other barrier system meets these requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号