首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
Since the 1980s, diseases have caused significant declines in the population of the threatened Caribbean coral Acropora palmata. Yet it is largely unknown whether the population densities have recovered from these declines and whether there have been any recent shifts in size-frequency distributions toward large colonies. It is also unknown whether colony size influences the risk of disease infection, the most common stressor affecting this species. To address these unknowns, we examined A. palmata colonies at ten sites around St. John, US Virgin Islands, in 2004 and 2010. The prevalence of white-pox disease was highly variable among sites, ranging from 0 to 53 %, and this disease preferentially targeted large colonies. We found that colony density did not significantly change over the 6-year period, although six out of ten sites showed higher densities through time. The size-frequency distributions of coral colonies at all sites were positively skewed in both 2004 and 2010, however, most sites showed a temporal shift toward more large-sized colonies. This increase in large-sized colonies occurred despite the presence of white-pox disease, a severe bleaching event, and several storms. This study provides evidence of slow recovery of the A. palmata population around St. John despite the persistence of several stressors.  相似文献   

2.
Differential susceptibility among reef-building coral species can lead to community shifts and loss of diversity as a result of temperature-induced mass bleaching events. We evaluate environmental influences on coral colony bleaching over an 8-year period in the Florida Keys, USA. Clustered binomial regression is used to develop models incorporating taxon-specific responses to the environment in order to identify conditions and species for which bleaching is likely to be severe. By building three separate models incorporating environment, community composition, and taxon-specific responses to environment, we show observed prevalence of bleaching reflects an interaction between community composition and local environmental conditions. Environmental variables, including elevated sea temperature, solar radiation, and reef depth, explained 90% and 78% of variability in colony bleaching across space and time, respectively. The effects of environmental variables were only partially explained (33% of variability) by corresponding differences in community composition. Taxon-specific models indicated individual coral species responded differently to local environmental conditions and had different sensitivities to temperature-induced bleaching. For many coral species, but not all, bleaching was exacerbated by high solar radiation. A 25% reduction in the probability of bleaching in shallow locations for one species may reflect an ability to acclimatize to local conditions. Overall, model results indicate predictions of coral bleaching require knowledge of not just the environmental conditions or community composition, but the responses of individual species to the environment. Model development provides a useful tool for coral reef management by quantifying the influence of the local environment on individual species bleaching sensitivities, identifying susceptible species, and predicting the likelihood of mass bleaching events with changing environmental conditions.  相似文献   

3.
Abstract: Concentrating tourism activities can be an effective way to closely manage high‐use parks and minimize the extent of the effects of visitors on plants and animals, although considerable investment in permanent tourism facilities may be required. On coral reefs, a variety of human‐related disturbances have been associated with elevated levels of coral disease, but the effects of reef‐based tourist facilities (e.g., permanent offshore visitor platforms) on coral health have not been assessed. In partnership with reef managers and the tourism industry, we tested the effectiveness of concentrating tourism activities as a strategy for managing tourism on coral reefs. We compared prevalence of brown band disease, white syndromes, black band disease, skeletal eroding band, and growth anomalies among reefs with and without permanent tourism platforms within the Great Barrier Reef Marine Park. Coral diseases were 15 times more prevalent at reefs with offshore tourism platforms than at nearby reefs without platforms. The maximum prevalence and maximum number of cases of each disease type were recorded at reefs with permanently moored tourism platforms. Diseases affected 10 coral genera from 7 families at reefs with platforms and 4 coral genera from 3 families at reefs without platforms. The greatest number of disease cases occurred within the spatially dominant acroporid corals, which exhibited 18‐fold greater disease prevalence at reefs with platforms than at reefs without platforms. Neither the percent cover of acroporids nor overall coral cover differed significantly between reefs with and without platforms, which suggests that neither factor was responsible for the elevated levels of disease. Identifying how tourism activities and platforms facilitate coral disease in marine parks will help ensure ongoing conservation of coral assemblages and tourism.  相似文献   

4.
Elevated sea surface temperatures in the late 1990s were associated with widespread coral mortality in the Arabian Gulf, particularly in Acropora dominated areas. This study investigates the composition, condition, and recruitment patterns of coral communities in Saih Al-Shaib, Dubai, United Arab Emirates, a decade after mass bleaching. Five statistically distinct communities were identified by cluster analysis, with grouping optimized from 17 significant indicator species. Overall, 25 species of scleractinian coral were observed, representing 35 ± 1.6% coral cover. Densities of recruits were low (0.8 ± 0.2 m−2), and composition generally reflected that of the surrounding adult community. Ten years after mass mortality, Acropora dominated assemblages were observed in three of the six sites examined and coral cover (41.9 ± 2.5%) was double post-bleaching cover. One shallow near-shore site appears to have had recovery of Acropora reset by a further bleaching event in 2002. However, the prevalence of young Acropora colonies here indicates that recovery may recur in several years. One area formerly dominated by Acropora is now dominated by faviids and poritids, with adult and juvenile composition suggesting this dominance shift is likely to persist. Porites lutea and Porites harrisoni dominated communities were negligibly impacted by the bleaching events, and the limited change in coral cover and composition in intervening years likely results from slow growth and low recruitment. Despite strong recovery of several dominant Acropora species, five formerly common species from this area were not observed suggesting local extinction. Dubai coral communities exhibit both resistance and resilience to elevated sea temperatures. The conservation of these patch reefs is warranted given the predicted increase in bleaching events, and the role that these communities may play in regional recovery.  相似文献   

5.
Aspergillosis is a widespread disease that has impacted the demography of the Caribbean sea fan coral, Gorgonia ventalina. The innate coral immune defenses can be measured as constitutive levels of immune proteins (peroxidase [POX], prophenoloxidase [PPO], lysozyme-like activity [LYS], exochitinase [EXOC]), antioxidant (superoxide dismutase [SOD]), and antimicrobial (antibacterial [AB] and antifungal [AF]) activity. Therefore, variations in these parameters across a geographic region could provide clues to the role of environment in disease. This study examined healthy sea fans collected in July 2005 from six offshore sites in the Florida Keys lying between 24.569°N and 25.220°N, a distance of ~145 km. Contrary to expectations, small (<15 cm) colonies did not differ significantly from large colonies (>15 cm) in the protein-based levels of activity in any of the measured parameters. However, there were significant differences in many of the parameters among sites, and Molasses Reef and Looe Key Reef were the most different in POX, PPO, SOD, and AF activity. This suggests that there are potential site-specific environmental factors that shape the immune physiology of colonies. Several proxies of environmental stress were also regressed against levels of the immune parameters. The proxies included 10 year averages of benthic community composition, 5 year averages of water quality, and historic aspergillosis disease prevalence and severity. Generality about environmental drivers was limited by assaying only six sites, but several patterns did emerge. SOD, EXOC, and AF activity were all correlated with percent bare substrate cover, suggesting that certain immune components may be activated in low coral environments. LYS and EXOC activity were positively correlated with dissolved inorganic nitrogen (DIN), one proxy of water quality. There were no relationships between any of the measured immune parameters and previous disease prevalence and severity. This study is a first step in evaluating levels of within- and between-site variation in coral immunity and investigating possible environmental drivers.  相似文献   

6.
The distribution and population structure of the eurybathic gorgonian Corallium rubrum were studied off Cap de Creus (Costa Brava, Northwestern Mediterranean Sea). Red coral is endemic to the Mediterranean Sea and the adjacent NE Atlantic coast, where it has been over exploited for centuries. This study presents, the first quantitative data on the spatial distribution and structure of a population extending between 50 (common SCUBA limits) and 230 m depth, and compared it with shallow populations previously studied in the same area. Different remotely operated vehicles (ROV) and two methodological approaches were employed during four cruises between 2002 and 2006: 1-Extensive surveys: sea to coast transects in which red coral density and patch frequency were recorded; 2-Intensive surveys, in which parameters describing colony morphology were recorded. Most of the hard substrate between 50 and 85 m depth was inhabited by red coral colonies, showing a patch frequency of 8.3 ± 7.9 SD patches per 100 m-transect (total transect area: 34 m2), and within-patch colony densities of 16–376 colonies m−2 (mean of 43 ± 53 colonies m−2). Below 120 m depth red coral was less abundant, and rather than forming dense patches as in shallow water, isolated colonies were more common. The population structure differed between sites that are easily accessible to red coral fishermen, and remote ones (both at similar depth, 60–80 m), as colonies in easily accessible locations were smaller in height and diameter, and showed a less developed branching pattern. At shallower locations (10–50 m depth) the population structure was significantly different from those at deeper locations, due to the heavy harvesting pressure they are exposed to in the shallows. Twenty-five to forty-six percentage of the deeper colonies were taller than 6 cm, while only 7–16% of the shallow water colonies exceeded 6 cm colony height. Forty-six to seventy-nine percentage of the colonies in deeper waters were large enough to be legally harvested, while only 9–20% of the shallow water colonies met the 7 mm legal basal diameter to be collected. The branching pattern was also better developed in deeper colonies, as up to 16% of the colonies showed fourth order branches, compared to less than 1% of the shallow water colonies (of which 96% consisted of only one single branch). The results thus confirm that C. rubrum populations above 50 m depth are exposed to a higher harvesting intensity than deeper populations in the same area.  相似文献   

7.
Gorgonia ventalina’s density, size structure and lesion prevalence was measured at six sites in Puerto Rico that exhibited variation in horizontal water transparency, sedimentation rates, suspended particle matter, scleractinian and macroalgal cover. G. ventalina density varied significantly among sites (between 0.84 and 0.007 colonies/m2), and was positively correlated with water transparency. Size structure did not vary much among sites, and reflects high mortality among the smaller size classes and high survivorship in large colonies. Prevalence of active fungi-induced lesions (type I) did not vary significantly among sites and was density-independent. However, prevalence of old lesions of unknown origin (type II) did vary among reefs and was negatively correlated with water transparency. Prevalence of types I or II lesions was independent of colony size. Our results suggest that (1) turbidity and sedimentation are important abiotic factors controlling the abundance of sea fans, (2) variation in settlement success and early survivorship of recruits has more impact on the sea fan populations than variation in the survivorship of large colonies and (3) prevalence of aspergillosis (type I) at the studied sites is similar to that reported for other Caribbean reefs and supports the epizootic nature of the disease and (4) lesions with exposed skeleton are more likely to be colonized by fouling organisms at impacted reefs. The combined effects of anthropogenic impacts and aspergillosis may cause local extinctions of sea fans, as is becoming evident in many reefs in Puerto Rico.  相似文献   

8.
M. Fine  H. Zibrowius  Y. Loya 《Marine Biology》2001,138(6):1195-1203
The scleractinian coral Oculina patagonica De Angelis is a new immigrant from the Southwest Atlantic to the Mediterranean Sea, having established itself only recently along the Israeli coast. This species is the only scleractinian coral reported to have invaded a new region. In order to understand the swift establishment of this species along the Israeli coast, from 1994 to 1999 we studied its distribution, abundance, reproduction, recruitment, survival, and the effect of bleaching events on its population abundance. In addition, population studies of O. patagonica were performed at several localities along the eastern and western Mediterranean coasts. Highest abundance was recorded along the Spanish coast, reaching 30lj colonies per 10 m line transect in shallow water. Second in abundance was the Israeli coast, with a maximum of 10DŽ colonies per transect. O. patagonica was rare along the coast of Italy, and absent along the Mediterranean coast of France. During the study, both mortality and recruitment along the Israeli coast were very low. In contrast, recruitment along the Spanish coast was very high. Reproduction of the species was studied using gonadal histology. O. patagonica is gonochoric. Female gonads were first observed in May and male gonads in July, both reaching maturity in late August and early September. Naturally occurring azooxanthellate colonies of O. patagonica inhabiting small dark caves developed gonads and spawned in parallel to zooxanthellate colonies exposed to light. No gonads were found in zooxanthellate colonies that underwent bleaching during the reproduction season. The high incidence of bleaching events along the Israeli coast observed throughout the years of this study may explain the low recruitment of new colonies during the same period. In view of its current recruitment patterns, we expect further expansion of O. patagonica in range and abundance in the western Mediterranean, but very small expansion of the population in the eastern Mediterranean, due to repetitive annual bleaching events.  相似文献   

9.
Abstract: In 1998, tropical sea surface temperatures were the highest on record, topping off a 50-year trend for some tropical oceans. In the same year, coral reefs around the world suffered the most extensive and severe bleaching ( loss of symbiotic algae) and subsequent mortality on record. These events may not be attributable to local stressors or natural variability alone but were likely induced by an underlying global phenomenon. It is probable that anthropogenic global warming has contributed to the extensive coral bleaching that has occurred simultaneously throughout the reef regions of the world. The geographic extent, increasing frequency, and regional severity of mass bleaching events are an apparent result of a steadily rising baseline of marine temperatures, combined with regionally specific El Niño and La Niña events. The repercussions of the 1998 mass bleaching and mortality events will be far-reaching. Human populations dependent on reef services face losses of marine biodiversity, fisheries, and shoreline protection. Coral bleaching events may become more frequent and severe as the climate continues to warm, exposing coral reefs to an increasingly hostile environment. This global threat to corals compounds the effects of more localized anthropogenic factors that already place reefs at risk. Significant attention needs to be given to the monitoring of coral reef ecosystems, research on the projected and realized effects of global climate change, and measures to curtail greenhouse gas emissions. Even those reefs with well-enforced legal protection as marine sanctuaries, or those managed for sustainable use, are threatened by global climate change.  相似文献   

10.
Coral bleaching events are often associated with higher levels of coral mortality but when this occurs in the chronology of individual bleaching events is poorly documented. Knowing when mortality occurs is important for understanding molecular mechanisms and the putative adaptive significance of the response (the Adaptive Bleaching Hypothesis). In a detailed study of a coral bleaching event on the Great Barrier Reef, involving weekly and twice weekly repetitive observations of >200 individually marked corals over an 18 month period (∼16,000 observations), it is shown that bleaching in Acropora latistella, A. subulata and Turbinaria mesenterina was an acute, rapid response, occurring within days of a peak in seawater temperatures exceeding previously described thresholds. Subsurface light levels, measured over the duration of the event, were not anomalous. Full bleaching (i.e. whole colonies turning bone-white) and partial bleaching (white patches) was observed in the Acropora spp. whilst the T. mesenterina colonies typically paled to a light brown colour. Algal densities in bleached corals were 10–30% of those of normally pigmented corals (∼2.5 × 106 algae per cm2), and in this instance bleaching was clearly a sudden, isolated, stress event and not an extreme low-point in the seasonal fluctuation of the density of symbiotic algae. Bleached corals were associated with high levels of partial and whole-colony mortality, but mortality was exclusively limited to the two Acropora spp. Importantly, most of this mortality was recorded in surveys conducted 1 and 2 weeks after bleaching was first observed, and for A. latistella as little as 1 week after bleaching was first observed. This suggests that in this particular bleaching event, for the Acropora species, that bleaching and mortality were intimately linked: this in turn suggests it was a pathological phenomenon. The study highlights a problem in the adaptive bleaching hypothesis, whereby significant levels of mortality can occur in a bleaching event before any chance for subsequent recombination of the host-symbiont unit. It is argued that in order to further evaluate the significance of bleaching as a potentially adaptive mechanism, bleaching-induced and bleaching-related mortality have to be fully considered. It is necessary to incorporate the cost (in terms of mortality) of a bleaching event, the recurring cost of reverting to the original, mortal, stress–prone combination after the event, and the higher cost associated with forming a maladaptive combination.  相似文献   

11.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   

12.
Bleaching of corals results from the loss of their symbiotic algae (zooxanthellae) and/or pigments. The supply of photoassimilates provided by the zooxanthellae to the coral declines during bleaching and reduces the ability to activate energy-costly processes such as maintenance, growth and reproduction. In the present study we compared the competitive outcomes, expressed as overgrowth and changes in colony sizes of Oculina patagonica (an encrusting Mediterranean stony coral) and the bryozoan Watersipora sp., growing in contact with each other, during and between bleaching events. Year-round observations of tagged colonies showed alternating competitive outcomes: O. patagonica wins over Watersipora sp. between bleaching events, but loses during bleaching events. Using the 14C-point-labeling technique on coral tissue, we examined intra-colonial translocation of photosynthetic products from the point-tissue labeling towards interaction zones. In non-bleached O. patagonica, competition resulted in preferentially oriented translocation of 14C products to the interaction zone located up to 8 cm away from the tissue-labeling site. Sites opposite the interaction zone received significantly less labeled photoassimilates compared to the interaction zone. In bleached colonies (40-85% bleached surface area), such translocation did not occur, probably explaining the failure to compete with the encrusting neighbor Watersipora sp. Our findings demonstrate the importance of colonial integration and resource orientation for the competitive superiority of O. patagonica.  相似文献   

13.
Using dynamic energy budget (DEB) theory, this paper explores the potential of excess and harmful radiation, notably UV, to cause changes in performance and, ultimately, bleaching in scleractinian corals for a range of ambient nitrogen and (beneficial) photosynthetically active radiation levels. Two negative impacts of radiation are considered: a reduction in the capacity of the symbiont to generate energy through photosynthesis (defined in this paper as photoinhibition); an increase in the costs for the symbiont to remain viable due to repair of damage (defined in this paper as photodamage). Model predictions indicate that although both types of impact reduce the growth potential of host and symbiont, photoinhibition predominantly affects host features, except at very low ambient nitrogen levels, under which conditions the severity of nitrogen limitation is so strong that a reduction in photosynthetic rates due to photoinhibition has minimal impact. In steady state, photoinhibition leads to a reduction in host biomass, and an increase in symbiont density, implying that photoinhibition (as defined in this paper) is unlikely to cause bleaching. In contrast, the impact of photodamage is mostly affecting symbiont features, including a decline in symbiont density. Thus, photodamage may contribute to coral bleaching. Furthermore, the model predicts that, with both photoinhibition and photodamage, an increasing ratio of harmful to beneficial radiation accelerates the suppression of growth rates of symbiont and host, implying that coral health deteriorates progressively faster with increasing harmful radiation, such as UVb.  相似文献   

14.
It is speculated that differences in coral bleaching susceptibility may be influenced by the genotype of in hospite Symbiodinium and their differential responses to bleaching stressors. Photoinhibition of photosystem II (PSII), damage to the D1 (psbA) PSII reaction centre protein and production of reactive oxygen species by in hospite Symbiodinium are likely precursors of coral bleaching. In order to assess whether photorepair rates of in hospite Symbiodinium underlie the bleaching susceptibility of their hosts, photoinhibition (net and gross), photoprotection and photorepair rates were assessed in a bleaching-‘tolerant’ coral (P. astreoides) and a bleaching-‘sensitive’ coral (M. faveolata) using non-invasive fluorometric techniques and by blocking de novo synthesis of psbA. Previous studies using such techniques have demonstrated that in vitro Symbiodinium types ‘sensitive’ to bleaching stressors had reduced rates of photorepair relative to ‘tolerant’ Symbiodinum types. Our measurements demonstrated that Symbiodinium in the more bleaching tolerant P. astreoides had higher photorepair rates than Symbiodinium in M. faveolata. Higher repair rates in P. astreoides resulted in lower net photoinhibition relative to M. faveolata, where both corals exhibited similar susceptibility to photodamage (gross photoinhibition). Photoprotective mechanisms were observed in both corals; M. faveolata exhibited higher antennae-bed quenching than P. astreoides at low-light intensities, but at and above light-saturating intensities, which are different for each coral species, P. astreoides displayed more efficient non-photochemical quenching (Stern–Volmer quenching) of chlorophyll fluorescence than M. faveolata. Increased NPQ by P. astreoides at E/E k ≥ 1 was not driven by antennae-bed quenching. The ability of in hospite Symbiodinium in P. astreoides to mitigate the effects of photoinhibition under high light conditions compared with Symbiodinium in M. faveolata, and their high repair capacity following photoinhibition, may be a key factor to consider in future bleaching studies and may underlie the relative bleaching tolerance of P. astreoides compared to M. faveolata.  相似文献   

15.
Knowledge of host range and mechanisms of disease resistance is fundamental to predicting impacts and spread of marine diseases. Prevalence of signs of aspergillosis, caused by the terrestrial fungus Aspergillus sydowii, was assessed in the Yucatan among three species of sea fan: Gorgonia ventalina, G. cf. mariae, and G. flabellum. The Yucatan is unusual in that ranges of all three sea fan species overlap at many sites along a cline of increasing depth, allowing us to evaluate potential causes of differing prevalence among species. Signs of aspergillosis were observed in all the three species. However, the prevalence of infection in G. cf. mariae, a deep-water species, was consistently low even at sites where G. ventalina was common and had moderate levels of infection. Because G. cf. mariae is a relatively small-stature sea fan, we compared the prevalence of signs in G. cf. mariae to a subset of comparatively sized G. ventalina. G. ventalina had a significantly higher prevalence of aspergillosis, indicating that size does not explain the lower prevalence in G. cf. mariae. Prevalence of disease signs on the shallow-water G. flabellum was also significantly higher than G. cf. mariae, but did not differ from G. ventalina. To test the hypothesis that higher chemical resistance accounts for the low prevalence of disease in G. cf. mariae, we measured the response of A. sydowii in culture to antifungal extracts from each sea fan species. Significantly lower fungal growth rates on extracts of G. cf. mariae than G. ventalina support the hypothesis that G. cf. mariae is more chemically resistant to aspergillosis. When comparing sea fan disease across different regions of the Yucatan, we detected significantly higher prevalence in G. ventalina near Akumal than further north near Cozumel and Puerto Morelos. In Akumal, there was a strong positive correlation between sea fan size and disease, with the largest fans showing the highest prevalence and severity in all three species. In addition, prevalence of aspergillosis in G. ventalina was density-dependent in Ak.  相似文献   

16.
In the rocky subtidal ecosystem of the western North Atlantic outbreaks of the introduced epiphytic bryozoan Membranipora membranacea cause defoliation of kelp beds and facilitate the introduction of other non-native benthic species. We quantified size- and temperature-dependent growth rates of M. membranacea colonies in the field and the laboratory for durations of 8–23 days. Also, we examined the interaction between food abundance and temperature on growth rates of newly settled colonies in the laboratory. Growth rates were positively related to temperature and increased exponentially with size of colonies over the ranges examined (5.7–16.2°C and 0.5–192 mm, respectively), and were significantly higher in the field than in the laboratory. There was an interactive effect between food and temperature on the size and growth rates of colonies, with the most pronounced effects of food limitation on colonies grown at the warmest temperatures, and no effect of food on colonies grown at the coldest temperatures. Quantifying the growth rates of introduced species is essential to understanding their population dynamics, particularly when outbreaks can have severe impacts on the native community.  相似文献   

17.
P. J. Edmunds 《Marine Biology》1994,121(1):137-142
The hypothesis that intraspecific variation in coral bleaching is a result of the distribution of bleaching-susceptible clonal genotypes (genets) was addressed using photoquadrats recorded during the 1987 Caribbean bleaching event on a reef dominated by Montastraea annularis (Morphotype I), together with manipulative experiments with Porites porites. Nearest-neighbor analysis showed that bleached colonies (ramets) of M. annularis at 10 m depth had a high probability (0.80) of having a nearest bleached neighbor of the same genet rather than a bleached ramet of a different genet. Furthermore, the frequency distributions of bleached ramets of M. annularis in the photoquadrats was significantly different from a Poisson distribution, suggesting that bleached ramets were aggregated on the reef. Manipulative experiments with P. porites from 15 m depth showed that some genets were more susceptible to thermal bleaching than others, since three genets had significantly different rates of zooxanthellae loss when exposed to elevated temperatures in tanks receiving irradiances similar to those found in situ. These results suggest that the in situ patchy distribution of bleached ramets could correspond to the distribution of certain genets, and that adjacent genets can exhibit sufficiently different phenotypes to account for intraspecific variation in bleaching. Further studies of genet-specific coral bleaching may provide valuable insights into the causes and consequences of bleaching.  相似文献   

18.
In April-May 1998, mass coral bleaching was observed in the lagoon of Rangiroa Atoll, Tuamotu Archipelago, French Polynesia. Six months later, the extent of bleaching-induced coral mortality was assessed at three sites. Corals in the fast-growing genus Pocillopora had experienced >99% mortality. Many large colonies of the slow-growing genus Porites (mean horizontal cross-sectional area 5.8 m2) had also died - a phenomenon not previously observed in French Polynesia and virtually unprecedented world-wide. At one site, 25% of colonies, or 44% of the pre-bleaching cover of living Porites, experienced whole-colony mortality. At the two other sites, recently dead Porites accounted for 41% and 82% of the pre-bleaching live cover. Mortality in Porites was negatively correlated with depth between 1.5 and 5 m. Using a 50-year dataset of mean monthly sea surface temperature (SST), derived from ship- and satellite-borne instruments, we show that bleaching occurred during a period of exceptionally high summer SST. 1998 was the first year in which mean monthly SSTs exceeded the 1961-1990 upper 95% confidence limit (29.4°C) for a period of three consecutive months. We suggest that the sustained 3-month anomaly in local summer SST was a major cause of coral mortality, but do not discount the synergistic effect of solar radiation. Recovery of the size-frequency distribution of Porites colonies to pre-bleaching levels may take at least 100 years.  相似文献   

19.
Although the fitness consequences of herbivory on terrestrial plants have been extensively studied, considerably less is known about how partial predation impacts the fitness of clonal marine organisms. The trophic role of Caribbean parrotfish on coral reefs is complex: while these fish are important herbivores, as corallivores (consumers of live coral tissue), they selectively graze specific species and colonies of reef-building corals. Though the benefits of parrotfish herbivory for reef resilience and conservation are well documented, the negative consequences of parrotfish grazing for coral reproductive fitness have not been previously determined. We examined recently grazed colonies of Montastraea annularis corals to determine whether grazing was positively associated with coral reproductive effort. We measured gonad number, egg number and size, and proportional reproductive allocation for grazed and intact coral colonies 2–5 days prior to their annual spawning time. We found that parrotfish selectively grazed coral polyps with high total reproductive effort (number of gonads), providing the first evidence that parrotfish selectively target specific tissue areas within a single coral colony. The removal of polyps with high reproductive effort has direct adverse affects on coral fitness, with additional indirect implications for colony growth and survival. We conclude that chronic grazing by parrotfishes has negative fitness consequences for reef-building corals, and by extension, reef ecosystems.  相似文献   

20.
Mass coral bleaching events have occurred on a global scale throughout the worlds tropical oceans and can result in large-scale coral mortality and degradation of coral reef communities. Coral bleaching has often been attributed to periods of above normal seawater temperatures and/or calm conditions with high levels of ultraviolet radiation. Unusually high shallow-water temperature (>29°C) in Kaneohe Bay, Hawaii, USA, in late summer (20 August–9 September) and fall (1–7 October) of 1996 produced visible bleaching of two dominant corals, Porites compressa Dana, 1864 and Montipora verrucosa Dana, 1864. The present study examined chlorophyll a (chl a), total lipid concentrations, and lipid class composition in corals of both species in which the entire colony was non-bleached, moderately bleached, or bleached. Skeletal, host tissue, and algal symbiont 13C values were also measured in non-bleached and bleached colonies. In additional unevenly bleached colonies, paired samples were collected from bleached upper surfaces and non-bleached sides. Samples were collected on 20 November 1996 during the coral recovery phase, a time when seawater temperatures had been back to normal for over a month. Chl a levels were significantly lower in bleached colonies of both species compared with non-bleached specimens, and in bleached areas of unevenly bleached single colonies. Total lipid concentrations were significantly lower in bleached P. compressa compared with non-bleached colonies, whereas total lipid concentrations were the same in bleached and non-bleached M. verrucosa colonies. The proportion of triacylglycerols and wax esters was lower in bleached colonies of both species. Both bleached and non-bleached M. verrucosa had from ~17% to 35% of their lipids in the form of diacylglycerol, while this class was absent in P. compressa. 13C was not significantly different in the host tissue and algal symbiont fractions in non-bleached and bleached samples of either species. This suggests that the ratio of carbon acquired heterotrophically versus photosynthetically was the same regardless of condition. Skeletal 13C was significantly lower in bleached than in non-bleached corals. This is consistent with previous findings that lower rates of photosynthesis during bleaching results in lower skeletal 13C values. The two species in this study displayed different lipid class compositions and total lipid depletions following bleaching, suggesting that there is a difference in their metabolism of lipid reserves and/or in their temporal responses to bleaching and recovery.Communicated by J.P. Grassle, New Brunswick  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号