首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Increasing the scope and accuracy of information about pinniped diets obtainable from non-invasive techniques is increasingly important, particularly in cases where pinniped species are threatened or endangered. This study is the first to explore the potential for using elemental analysis of the otoliths found in scat to enhance the information available for diet analyses. We investigated the effects of pinniped digestion on otolith microchemistry using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). We compared the elements contained in the edges (adult stage) and cores (larval/juvenile stage) of otoliths from Pacific herring (Clupea pallasii), Atka mackerel (Pleurogrammus monopterygius), and Walleye pollock (Theragra chalcogramma) recovered from the scat of captive Steller sea lions (Eumetopias jubatus) to elements in a sample of pristine (undigested) otoliths. We found that digestion had a significant effect on four of the six sampled combinations of species and otolith region (herring edges and cores, mackerel edges, and pollock cores), and that Rb most frequently showed significant differences in concentration after digestion. We could significantly discriminate among species of both pristine and digested otoliths using either otolith edges or cores with the elements Ba, Rb, Sr, Y, and Mg. When compared to previously identified digested otoliths, unknown samples of the three species of digested otoliths could be discriminated with 55–100% accuracy depending on species and otolith region. When compared to a library of previously identified pristine and digested otoliths, unknown samples of digested otoliths could be discriminated to species with 65–88% accuracy. When the group of unknown digested otoliths was compared to known pristine otoliths, discrimination ranged from 45 to 65%. These results indicate that elemental analysis could be used to supplement visual identification of otoliths from scat. However, further research is required to determine whether elemental analysis of digested otoliths could be useful for prey fish population studies.  相似文献   

2.
This study quantifies the manner in which Australian fur seals, Arctocephalus pusillus doriferus, use their prey in a spatial and temporal context. We analysed 977 scat and 66 regurgitate samples collected from Tasmanian breeding colonies and haul-outs between 1994 and 2000. Diagnostic prey remains identified in the scats represented 35 fish taxa and 8 cephalopod taxa. The main taxa identified in scats, where frequency of occurrence was 10%, were leatherjacket species (family Monocanthidae), redbait (Emmelichthys nitidus), barracouta (Thyrsites atun), jack mackerel (Trachurus declivis) and red cod (Pseudophysis bachus). Regurgitates were dominated by cephalopods, primarily Goulds squid (Nototodarus gouldi), Octopus maorum, O. berrima/pallidus and Sepia apama. Discriminant function analyses indicated that there were generally no significant differences in the composition of the diet between colonies within a year, suggesting that prey distribution is fairly uniform throughout Bass Strait at those time scales. The diet at breeding colonies, however, exhibited significant inter- and intra-annual variation, determined by the presence of several key taxa, such as barracouta and a species of scorpionfish (family Scorpaenidae). The diet composition also varied regionally, between Bass Strait and southern Tasmania in spring 1999 and autumn 2000, with redbait, barracouta and a species of scorpionfish identified as the main taxa contributing to this difference. Redbait occurred in the diet only in southern Tasmania, whereas barracouta and scorpionfish occurred only in Bass Strait.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-003-1219-0.Communicated by G.F. Humphrey, Sydney  相似文献   

3.
Bones contain the majority of body lipid in some marine fish. In the sheepshead wrasse Pimelometopon pulchrum and the sablefish Anoplopoma fimbria, the bone lipid comprised 79 to 93% and 52 to 82% of the total body lipid, respectively. The senorita Oxyjulus california, another species of wrasse, has only 14% of its body lipid in bone. To determine whether dietary lipid is deposited quickly in the bone lipid, three species of fish were fed 1-14C-palmitic acid. Radioactivity appeared in the bone lipid as soon as 12 h after feeding, with the species rich in bone lipid incorporating the highest activity relative to the flesh. Roughly 80% of the radioactivity recovered in A. fimbria bone lipid was found in triglyceride. Radioactivity was equally distributed between phospholipid and triglyceride in P. pulchrum bone lipids. The results suggest that in some marine fish the bones contain the majority of the organism's reserve energy.  相似文献   

4.
Juvenile salmon exhibit high growth rates upon their arrival into the marine environment. Dietary changes from freshwater and estuarine habitats to those derived from the marine environment may play an important role in ultimate adult survival. We measured the total lipid and fatty acid (FA) composition of juvenile Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and 18 of their potential prey items sampled from coastal waters during their first few months at sea. Coho salmon had significant reductions in their lipid content (% wet weight) between May and June, likely due to early marine growth. We did not find a significant drop between May and June Chinook salmon lipid content, which may indicate an earlier ontogenetic selection to marine prey that are higher in lipids and essential fatty acids (EFAs). Juvenile salmon ate prey of both high and low lipids. Significant FA compositional changes occurred for both coho and Chinook salmon between May and June. In May, the FA profile of juvenile salmon, especially coho salmon, did not resemble their prey items; however, in June, there was a strong correlation between salmon and their common fish prey as determined by gut content analysis. Significant increases in the level of EFAs, especially docosahexaenoic acid (DHA, 22:6n-3) accounted for the majority of the monthly differences in salmon tissue FA composition. In order for juvenile salmon to adequately meet their physiological requirements, they may have adapted to select advantageous prey with higher levels of EFAs, especially DHA, in order to rapidly increase their growth and ultimate survival.  相似文献   

5.
In animal species, prey processing and the provisioning of nutrients are subject to several constraints related with finding, ingesting and processing food. In most bird species, these constraints are obvious as a consequence of food morphology. In the case of the bearded vulture (Gypaetus barbatus), in comparison with other species, its behavioural and physiological adaptations apparently allow this vulture to ingest bone remains irrespective of their morphology. Here, by comparing bones delivered to the nest to be consumed (selected) and remains found at an experimental feeding station and at bone-breaking sites or ossuaries (rejected), I tested whether bearded vultures are capable of choosing from among the various anatomical parts of an animal carcass in relation to their fatty acid content (nutrient concentration hypothesis), their size (width-reduction hypothesis) or both. The results suggest that bearded vultures prefer the fatty anatomical parts (with a high percentage of oleic acid) of an animal carcass regardless of bone length, although bone morphology as a consequence of handling efficiency or the ingestion process may also play a secondary role in food selection. The close association between the bones selected and their high fat value implies an optimisation of foraging time and of the increased energy gained from the food. This is in line with selective foraging to redress specific nutritional imbalances (nutrient concentration hypothesis) and, secondarily, the width-reduction hypothesis.  相似文献   

6.
The diet of pinnipeds is most commonly inferred from morphologically diagnostic remains of prey in their scats. Although this method can generate quantitative estimates of diet simply, important prey types may not always be detected. DNA-based methods improve detection of prey in scats, but they are not quantitative. While some studies have combined morphological and DNA-based methods, these have only assessed prey that are represented by their hard remains in scats. To overcome this bias, we apply molecular and morphological analyses to the soft and hard portions of faecal samples respectively, to estimate the diet of lactating Antarctic fur seals (Arctocephalus gazella) on Heard Island. The diet of this population is of particular interest because it is expanding rapidly and may rely to some extent on mackerel icefish (Champsocephalus gunnari), which are subject to commercial fisheries. Based on results from morphological analysis and likely important prey types, we tested for DNA remains of C. gunnari, myctophids and squid in faecal samples. The proportion of samples (n = 54) yielding no dietary information was reduced from around 25.9% using either method alone, to 9.3% when combined. Detection of all prey types tested for was notably improved by integrating molecular and morphological data. Data from either method alone would have underestimated the number of animals consuming C. gunnari by around 25.7%. Detection of multiple prey types in samples increased from 9.3% when using morphological analysis only, to 33.3% when using DNA only, to 46.3% when using both methods. Taken in isolation, morphological data inferred that individual seals consume either C. gunnari or myctophids, probably foraging in separate locations characteristic of those prey. Including molecular data demonstrated that while this may be true of some individuals, many other seals consume a mixed diet of at least C. gunnari, myctophids and squid. This new approach of combining DNA-based and morphological analyses of diet samples markedly increased the number of samples yielding dietary information, as well as increasing the amount of information attained from those samples. Our findings illustrate the broad potential of this technique to improve insight into trophic interactions in marine ecosystems.
Ruth M. CasperEmail:
  相似文献   

7.
Abstract: Most protected areas are too small to sustain populations of wide‐ranging mammals; thus, identification and conservation of high‐quality habitat for those animals outside parks is often a high priority, particularly for regions where extensive land conversion is occurring. This is the case in the vicinity of Emas National Park, a small protected area in the Brazilian Cerrado. Over the last 40 years the native vegetation surrounding the park has been converted to agriculture, but the region still supports virtually all of the animals native to the area. We determined the effectiveness of scat‐detection dogs in detecting presence of five species of mammals threatened with extinction by habitat loss: maned wolf (Chrysocyon brachyurus), puma (Puma concolor), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), and giant armadillo (Priodontes maximus). The probability of scat detection varied among the five species and among survey quadrats of different size, but was consistent across team, season, and year. The probability of occurrence, determined from the presence of scat, in a randomly selected site within the study area ranged from 0.14 for jaguars, which occur primarily in the forested areas of the park, to 0.91 for maned wolves, the most widely distributed species in our study area. Most occurrences of giant armadillos in the park were in open grasslands, but in the agricultural matrix they tended to occur in riparian woodlands. At least one target species occurred in every survey quadrat, and giant armadillos, jaguars, and maned wolves were more likely to be present in quadrats located inside than outside the park. The effort required for detection of scats was highest for the two felids. We were able to detect the presence for each of five wide‐ranging species inside and outside the park and to assign occurrence probabilities to specific survey sites. Thus, scat dogs provide an effective survey tool for rare species even when accurate detection likelihoods are required. We believe the way we used scat‐detection dogs to determine the presence of species can be applied to the detection of other mammalian species in other ecosystems.  相似文献   

8.
Recent phylogeographic research has indicated that biodiversity in the sea may be considerably greater than previously thought. However, the majority of phylogeographic studies on marine invertebrates have exclusively used a single locus (mitochondrial DNA), and it is questionable whether the phylogroups identified can be considered distinct species. We tested whether the mtDNA phylogroups of the southern African sandprawn Callianassa kraussi Stebbing (Decapoda: Thalassinidea) are also recovered using nuclear sequence data. Four mtDNA phylogroups were recovered that were each associated with one of South Africa’s four major biogeographic provinces. Three of these were poorly differentiated, but the fourth (tropical) group was highly distinct. The nuclear phylogeny recovered two major clades, one present in the tropical region and the other in the remainder of South Africa. Congruence between mitochondrial and nuclear DNA indicates that the species comprises two Evolutionarily Significant Units sensu Moritz (1994). In conjunction with physiological data from C. kraussi and morphological, ecological and physiological data from other species, this result supports the notion that at least some of the mtDNA phylogroups of coastal invertebrates whose distributions are limited by biogeographic disjunctions can indeed be considered to be cryptic species.  相似文献   

9.
To determine the effects of prey quantity on central-place foraging of predatory wasps ( Polistes dominulus), prey of varying quality were distributed in patches. A field experiment was conducted, which controlled the amount and quality of prey available. 'Low-fed' colonies were provided with one-third the quantity of prey as that of 'high-fed' colonies. Both were provided with a 1:1 ratio of palatable:unpalatable prey. Experienced wasps of the high-fed colonies never selected unpalatable prey as their first choice of the day, whereas those of the low-fed colonies selected unpalatable prey as their first choice about 1:4 times. In general, wasps from the high-fed colonies reduced palatable patches to zero prey before exploiting unpalatable patches. Foundresses of high-fed colonies captured disproportionately more palatable prey than those of low-fed nests, but there was no correlation between ratio of palatable to unpalatable prey taken and the number of offspring produced. Wasps from low-fed colonies attacked unpalatable prey sooner, but not without considerable effort to avoid use of those patches. Foundresses of low-fed colonies also spent a greater proportion of time overall in unsuccessful search, which may explain why only wasps from low-fed colonies foraged on cool days. High-fed colonies produced more cells and more and heavier offspring than low-fed colonies. But the productivity of the low-fed colonies was greater than that of the 'natural' colonies, which had to find their own prey in a field-woodland area. These results indicate that prey scarcity changes foraging behavior and affects prey choice. These changes may not totally alleviate negative effects of unpalatable prey on colony development and offspring production. The results of this study increase understanding of the central-place foraging behavior of paper wasps, which are important biocontrol agents in natural and agricultural settings.  相似文献   

10.
The occurrence of swollen or hyperostotic bones in skeletal preparations, preserved museum material or whole fresh specimens of marine teleost fishes was identified in 92 species belonging to 22 families. Patterns of hyperostotic skeletal growth were typically consistent and often species-specific in all individuals larger than a certain size. The taxonomic distribution of hyperostosis in diverse phylogenetic groups suggests that it has arisen independently many times. Selected bones from two species of the family Carangidae, horse-eye jack Caranx latus Agassiz and crevalle jack Caranx hippos (Linnaeus), were examined in detail by light and electron microscopy. Nonhyperostotic bone contained osteoid-producing osteoblasts, resorbing osteoclasts, occasional osteocytes, and a rich vascular network, all characteristics of cellular bone. Thus, these fishes have a spatial juxtaposition of cellular and acellular bone tissues in adjacent and often serially homologous bone sites. The functional significance of hyperostosis is unknown, but it is a predictable manifestation of bone growth and development for the many taxa in which it occurs.  相似文献   

11.
In order to assess diet composition and niche breadth of this species, we analysed the stomach content of 182 specimens collected monthly along the eastern coast of Sicily (Central Mediterranean Sea). Overall, 50 prey taxa belonging to five major groups (algae, gastropods, crustaceans, polychaetes, fishes) were identified in 102 full stomachs. Benthic or epibenthic crustaceans, such as decapods, amphipods and isopods were the most important prey, whereas algae, gastropods, polychaetes and fishes were only occasionally ingested. In terms of composition by species, the diet of Scorpaena maderensis was characterized by a variety of rare or unimportant prey, which was consumed by few individuals only, although sometimes in large amount. As a result, S. maderensis can be considered a generalized and opportunistic feeder. The feeding intensity followed roughly a seasonal trend, with a minimum food intake in summer. The individual fish size was the most important factor affecting diet. According to the observed ontogenetic shift, small-sized individuals fed primarily on small crustaceans (i.e. amphipods and isopods), whereas large-sized specimens consumed preferably bigger and more vagile prey, such as walking and swimming decapods. No significant differences in diet were observed in relation to sex of predator and sampling season.  相似文献   

12.
13.
Increasing dietary specialization is an inherently risky strategy because it increases a species’ vulnerability to resource depletion. However, risks associated with dietary specialization may be offset by increased performance when feeding on preferred prey. Although rarely demonstrated, highly specialized species are expected to outperform generalists when feeding on their preferred prey, whereas generalists are predicted to have more similar performance across a range of different prey. To test this theory, we compared the growth rates of two obligate coral-feeding butterflyfishes (Chaetodon trifascialis and Chaetodon plebeius) maintained on exclusive diets of preferred vs nonpreferred prey. In the field, C. trifascialis was the most specialized species, feeding almost exclusively on just one coral species, Acropora hyacinthus. C. plebeius meanwhile, was much less specialized, but fed predominantly on Pocillopora damicornis. During growth experiments, C. trifascialis grew fastest when feeding on A. hyacinthus and did not grow at all when feeding on less preferred prey (P. damicornis and Porites cylindrica). C. plebeius performed equally well on both A. hyacinthus and P. damicornis (its preferred prey), but performed poorly when feeding on P. cylindrica. Both butterflyfishes select coral species that maximize juvenile growth, but contrary to expectations, the more specialized species (C. trifascialis) did not outperform the generalist species (C. plebeius) when both consumed their preferred prey. Increased dietary specialization, therefore, appears to be a questionable strategy, as there was no evidence of any increased benefits to offset increases in susceptibility to disturbance.  相似文献   

14.
Chemical cues released by damaged or dead organisms can affect how and where benthic organisms feed. These cues may cause predators to act as opportunistic scavengers in lieu of their normal predatory role. A scavenger, as defined in this study, is an organism that consumes damaged and/or dead organisms. In-situ experiments were performed to determine how the seastar Pycnopodia helianthoides (Brandt) reacts in the presence of chemical cues from one of its prey species, the butter clam Saxidomus giganteus (Deshayes), using both intact and damaged individuals. The results of these experiments suggest that P. helianthoides use their chemosensory abilities to locate damaged/dead prey. The role of current in propagating chemical cues was paramount in this foraging activity. P. helianthoides chose damaged prey over live prey even when live prey was encountered en route to the damaged individual. This study suggests that chemical cues emitted from damaged or dead individuals may cause significant changes in foraging tactics of key predators, thus altering food-web dynamics.Communicated by J.P. Grassle, New Brunswick  相似文献   

15.
Sagitta elegans and S. setosa are the two dominant chaetognaths in the North-East (NE) Atlantic. They are closely related and have a similar ecology and life history, but differ in distributional ranges. Sagitta setosa is a typical neritic species occurring exclusively above shelf regions, whereas S. elegans is a more oceanic species with a widespread distribution. We hypothesised that neritic species, because of smaller and more fragmented populations, would have been more vulnerable to population bottlenecks resulting from range contractions during Pleistocene glaciations than oceanic species. To test this hypothesis we compared mitochondrial Cytochrome Oxidase II DNA sequences of S. elegans and S. setosa from sampling locations across the NE Atlantic. Both species displayed very high levels of genetic diversity with unique haplotypes for every sequenced individual and an approximately three times higher level of nucleotide diversity in S. elegans (0.061) compared to S. setosa (0.021). Sagitta setosa mitochondrial DNA (mtDNA) haplotypes produced a star-like phylogeny and a uni-modal mismatch distribution indicative of a bottleneck followed by population expansion. In contrast, S. elegans had a deeper mtDNA phylogeny and a multi-modal mismatch distribution as would be expected from a more stable population. Neutrality tests indicated that assumptions of the standard neutral model were violated for both species and results from the McDonald-Kreitman test suggested that selection played a role in the evolution of their mitochondrial DNA. Congruent with these results, both species had much smaller effective population sizes estimated from genetic data when compared to census population sizes estimated from abundance data, with a factor of ~108–109 difference. Assuming that selective effects are comparable for the two species, we conclude that the difference in genetic signature can only be explained by contrasting demographic histories. Our data are consistent with the hypothesis that in the NE Atlantic, the neritic S. setosa has been more severely affected by population bottlenecks resulting from Pleistocene range shifts than the more oceanic S. elegans.  相似文献   

16.
On many sea shores of the Niedersachsen coast, the polychaete Scolelepis squamata is the dominant animal species living in the sediment of exposed beaches.The population of the predatory species Eteone longa, with a main distribution in more sheltered intertidal and subtidal habitats, has a certain overlap with S. squamata. In these restricted areas, S. squamata suffers from a permanent pursuit by E. longa during low tide. Field and laboratory studies have revealed that this predator-prey relationship follows a distinct behavioural pattern and is an exploitation of surviving animals: the predator does not ingest the whole prey individual but only feeds on regenerable parts of the body. Both species draw characteristic tracks on the sediment surface that illustrate the phases of the chase, the attempts at defence and the mutilation of the prey species.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

17.
The diet of the Humboldt penguin (Spheniscus humboldti) was examined and compared in two colonies in Chile. Field work was conducted on Pan de Azúcar Island in northern Chile in the breeding season 1998/1999 and on the Puñihuil Islands in southern Chile over two successive breeding seasons during 1997/1998 and 1998/1999. Penguin diet was studied by stomach-pumping birds and analysed by species composition, size and mass of prey. Fish were the dominant prey item at both sites, the contribution of cephalopods and crustaceans varying between sites. The fish prey consisted predominantly of school fish, but there were clear latitudinal differences in fish prey taken. Penguins in the northern colony consumed primarily garfish (Scomberesox saurus), while birds at the southern colony of Puñihuil fed primarily on anchovy (Engraulis ringens), Araucanian herring (Strangomera bentincki) and silverside (Odontesthes regia). The results showed significant differences in terms of numbers of fish taken between the two breeding seasons at Puñihuil. In 1997/1998 penguins consumed almost exclusively anchovy, while they fed primarily on silversides in the successive year. Almost all prey, except stomatopods, were characterised as being pelagic species that occur in relatively inshore water, consistent with the foraging behaviour of Humboldt penguins. The dependence of Humboldt penguins on commercially exploited, schooling prey species makes the species particularly susceptible to changes in prey stocks, due to non-sustainable fisheries management.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
We performed field and laboratory studies to investigate how large adult Leptasterias polaris detect and locate their major prey, large infaunal bivalves, in the sediment bottom community. A field survey using SCUBA diving showed that 95% of the locations where L. polaris dug into the sediment bottom were over bivalves and this success rate was much greater than if digging was done at random (22%). Furthermore, when sea stars were provided with a low density of randomly distributed prey in a laboratory arena, they dug exclusively in locations where a clam had been buried. These observations indicated that L. polaris locates infaunal prey prior to investing energy into digging. Studies in a laboratory flow tank showed that L. polaris readily detected and moved towards its preferred prey Ensis directus whereas its responses to less preferred prey Mya truncata and Spisula polynyma were much weaker. The degree to which it oriented towards these three common prey seemed to reflect potential energy intake relative to foraging costs (which likely increase with the depth of the different prey) and risks from interactions with other carnivores (which are greatest when feeding on large prey). This is the first study to clearly demonstrate that sea stars use prey odours to locate infaunal prey.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-004-1497-1Communicated by R.J. Thompson, St. Johns  相似文献   

19.
Benthic feeding on macrofauna was studied in juveniles of the sparids Lithognathus lithognathus and Rhabdosargus holubi in the upper reaches of the Gamtoos Estuary, South Africa. Fish and benthic macrofauna were sampled simultaneously, and the selection of invertebrate prey assessed. Both fish species strongly selected for corophioid amphipods and consumed other benthic taxa in low numbers. R. holubi also exploited aquatic autotrophs, while L. lithognathus had a narrow prey-spectrum, feeding almost exclusively on the tube-dwelling amphipod Grandidierella lignorum. G. lignorum was the most abundant prey species, both in the benthos and the fish's diet. This species also showed prominent behavioural differences between the sexes; males were markedly more active on the sediment surface than females, who rarely left their tubes during the day. Males switched from an infaunal to epifaunal microhabitat in search of receptive females, concurrently increasing their exposure to fish predators. Consequently, L. lithognathus selected significantly more males than female amphipods, causing a marked bias towards females in the sex ratio and age-structure of the amphipod population. Juvenile amphipods were less preyed upon, presumably as a result of lower prey-detection or capture efficiency by the predators. Accepting current notions about predation as an important structuring element for benthic communities, our data also stress the prominence of size-and sex-selective predation in structuring individual prey populations.  相似文献   

20.
Increasing concerns about the ecological impacts of ongoing and possibly worsening blooms of the toxic, carcinogenic cyanobacteria Lyngbya majuscula in Moreton Bay, Australia, led us to assess differences in meiofaunal prey assemblages between bloom and non-bloom substrates and the potential dietary impacts of dense L. majuscula blooms on the omnivorous benthivore, the Eastern Long-finned Goby, Favonigobius lentiginosus and the obligate meiobenthivorous juveniles of Trumpeter Whiting, Sillago maculata. Marked differences in invertebrate communities were found between sandy and L. majuscula bloom foraging substrates, with copepods significantly more abundant (18.49% vs. 70.44% numerical abundance) and nematodes significantly less abundant (55.91% vs. 1.21% numerical abundance) within bloom material. Gut analyses showed that bentho-planktivorous fishes exposed to L. majuscula in captivity had consumed a significantly greater quantity of prey by both total number (P < 0.0019) and volume (P < 0.0006) than fish exposed to sand treatments. Thus, it is likely for such fishes that L. majuscula blooms increase rates of prey encounter and consumption, with consequent changes in trophic relationships through shifts in predator–prey interactions between small benthivorous fishes and their meiofaunal prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号