首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 190 毫秒
1.
宋建阳  张汝国 《生态环境》2000,9(2):106-109
在测定珠江口红树群落生物量和生产力的基础上,进一步测定红树群落各组分的钾质量分数,计算群落钾的贮量、年存留量、年归还量、年吸收量、周转期和富集率,以了解珠江口红树群落钾元素的累积和循环状况,为珠江口红树林资源的保护和利用提供科学依据。  相似文献   

2.
对农桐间作(以桐为主间作型)的养分循环规律进行了研究。结果表明,泡桐各器官营养元素的含量随季节而变化。对营养元素的年吸收量为471.9595kg/hm ̄2,其中氮155.1429kg/hm ̄2,磷80.0821kg/hm ̄2,钾87.0394kg/hm ̄2,钙119.4603kg/hm ̄2,镁30.2348kg/hm ̄2。营养元素的年归还量为331.6155kg/hm ̄2,其中氮102.5721kg/hm ̄2,磷43.2922kg/hm ̄2.钾63.6497kg/hm ̄2,钙97.3586kg/hm ̄2,镁24.7429kg/hm ̄2。营养元素的循环率为70、26%,其中氮66.11%,磷54.06%,钾73.13%,钙81.50%,镁81.84%。  相似文献   

3.
28个土壤样品的养分测定和吸附试验以及8个田间肥效试验表明,闽东南旱地土壤的N、P、K、B是花生的普遍养分限制因子.部分土壤还缺乏Zn和Mg等养分.赤砂土的肥料三要素最佳用量分别为N54kg/hm2、P2O555kg/hm2、K2O87kg/hm2;红壤性水稻土为N52kg/hm2、P2O563kg/hm2、K2O92kg/hm2;海砂土为N94kg/hm2、P2O542kg/hm2、K2O85kg/hm2.10个对比试验表明,花生平衡施肥比群众常规施肥平均增产471kg/hm2,增产率为14.9%,每hm2净增收2053元.  相似文献   

4.
采用淹水嫌气培养法测定了20、25和30℃下红壤稻田氮的释放规律,结果表明,土壤氮矿化量随温度升高而增加,Q10平均为3.1;土壤供氮量是有效累积积温的函数.可用方程N=k[(T-T0)t]n来很好的描述(式中N为土壤氮矿化量,kg/hm2;T0为有效温度=15℃,T为土壤温度;t为时间d;n、k为拟合常数)。根据测定的周年水田耕层土壤温度,将这一方程用于估测田间条件下土壤氮供应量,在湘南早稻生长期间(4月20日-7月20日)为120kg/hm2,在晚稻生长期间(7月20日-10月30日)为140kg/hm2。  相似文献   

5.
本文研究了广东和海南红树林的土壤,植物叶子和死地被物的化学成分以及它们之间的相互关系,并与相同地区的一些植物群落进行比较,从而探讨红树林的生物地球化学特征。结果表明,红树林的土壤和植物的某些化学成分含量较高,尤其是Na和Ca的含量较为突出。另外,虽然海岸带海水的pH>8,土壤都呈酸性。红树林的养分利用率只有N较高,其余大多数元素都较低。红树林的生物吸收率和生物归还率通常也较低,但其大多数元素的生物分解率则较高。  相似文献   

6.
九龙江口桐花树红树林对重金属的吸收与累积   总被引:18,自引:0,他引:18  
探讨了福建九龙江口桐花树红树林对CU、Ph、Zn、Cd、Mn元素的吸收、累积及分布.结果表明:该林地土壤5种元素的储量关系为Mn>Zn>Ph>CU≥Cd;植物体不同部位,各元素含量有着明显的差异,含量范围分别为Ch1.51~5.70、Pb1.30~10.70、Zn18.0~100.1、Cd0.04~0.23和Mn15.5~237.5(w/10-6);植物对土壤元素的富集系数大小依次为Cd>Zn>Mn>Cu>Ph;群落现存生物量中,CU、Pb、Zn、Cd、Mn元素的现存累积量分别为16.56、63.30、445.05、1.14和1656.93(ρA/mg·m-2).其中,地下部分别占70.2%、81.8%、76.2%、72.2%和82.1%;林地残留物相应元素的储量分别为211.11、184.00、1941.69、6.19和22248.31(ρA/μg·m-2).  相似文献   

7.
用田间模拟试验法,研究了土壤中绿磺隆不同添加量与水稻危害剂量的关系。结果表明:稻田绿磺隆添加量超过0.375g(AI)/hm ̄2时,就可能对水用产生危害,在此用量水平下,绿磺隆在耕层土壤中的平均残留浓度为0.17μg/kg,按此推算,麦田按正常用量的2倍量(30g/hm ̄2)施用,在种麦期间绿磺隆在麦田土壤中的半衰期超过32.1d.即会对水稻产生危害。  相似文献   

8.
绿磺隆对水稻的残留危害剂量   总被引:3,自引:1,他引:3  
用田间模拟试验法,研究了土壤中绿磺隆不同添加量与水稻危害剂量的关系。结果表明:稻田绿磺隆添加量超过0.375g(AI)/hm^2时,就可能对水稻产生,在此用量水平下,绿磺隆在耕层土壤中的平均残留浓度为0.17μg/kg,按此推算,麦田按正常用量的2倍量(30g/hm^2)施用,在种麦期间绿磺隆在麦田土的半衰期超过32.1d,即会对水稻产生危害。  相似文献   

9.
城镇生活污水排放对红树林植物群落凋落物的影响   总被引:6,自引:0,他引:6  
利用凋落物收集网研究城镇生活污水排放对红树林植物群落凋落物的影响。所研究的红树林群落年总凋落物量为1198.91gm^-2,其中叶片和繁殖物部分共占90%左右。总凋落物量具有明显的季节变化模型,凋落物的高峰期落在多雨的夏季,尤其是8月份。污水排放一年期间,排污样带和对照样带之间红树林的总凋落物量以及凋落叶中的总有机碳、总氮、总磷水平没有显著的差异,污水排放没有导致红树林植物群落的凋落物量发生明显的  相似文献   

10.
旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响   总被引:32,自引:0,他引:32  
在 15 a长期定位试验基础上研究了黄土高原旱地长期施用不同用量和配比的氮、磷肥对土壤剖面中硝态氮分布和累积的影响。结果表明:长期大量施用氮肥,在土壤剖面 100~180 cm之间形成硝态氮累积层,峰值出现在 140 cm处,最大值为 67.92mg/kg(单施 N 180 kg/hm~2); 配合施用磷肥可以降低土壤剖面硝态氮质量分数,根据试验,提出了旱地合理施肥的氮磷肥用量。  相似文献   

11.
根据大量的观测分析资料,论述了刚果W5桉树人工林生态系统养分的地球化学循环和生物小循环。研究结果表明,每公顷每年通过地表径流和地下渗漏从生态系统输出的养分质量以K最多,达21.25 kg/(hm2a);其次为N,达17.21 kg/(hm2a)。桉树人工林生态系统养分流通质量的净变化值f(K)、f(Ca)为负值,f(N)、f(P)、f(Mg)为正值;桉树人工林生态系统养分的生物小循环研究表明,在一个轮伐期内,每公顷桉树吸收养分的质量,依次为Ca 429.03 kg/hm2,其次为N 277.01 kg/hm2和K 208.12 kg/hm2。而在一个轮伐期中归还的养分质量,Ca只有99.78 kg/hm2,K为113.04 kg/hm2。在养分循环率方面,与热带半落叶季雨林比较,桉树人工林生态系统的养分循环率要小得多,说明桉树人工林土壤养分趋向于减少。  相似文献   

12.
桉树人工林间种山毛豆,增加了凋落物量和养分归还量,改善了营养元素的生物小循环。在一个轮伐期内山毛豆归还土壤养分的数量如下:氮528.37kg/hm^2,磷28.06kg/hm^2,钾66.20kg/hm^2,钙184.96kg/hm^2,镁57.21kg/hm^2;而同期刚果W5桉归还土壤养分的数量为:氮85.98kg/hm^2,磷3.94kg/hm^2,钾11.80kg/hm^2,钙36.98kg/hm^2,镁18.30kg/hm^2。由于间种山毛豆增加了生态系统的养分收入,减少了水土流失的养分支出,系统的各种养分出现了盈余的状况。  相似文献   

13.
研究了福建三明27a生杉机光木混交林和杉木群落细根(d<2mm)的生产力、分布、和养分归还。结果表明,混交林细根生物量、N、P养分现存量分别为5.381thm^2、48.085kghm^-2和4.174kghm^-2,分别比杉木纯林增加17.4%、27.2%和20.0%,混交林林细根的年净生产力达4.124thm^-2a^-1,比纯林高出16.9%,混交林杉木和观光木细根均在表层土壤富集,而在较深层土壤再会得分布具镶嵌性;与混交林杉林相比,纯林杉木土吉表层细根量较少,最大分布层次下移,混交林中观光木细根的周转速率咪1.16,杉木为0.96和0.95;而林下植被层细根周转速率(1.46-1.52)均同于相应的乔木层,混交林细根的年死亡量、N和P养分年归还量分别达2.119thm^-2、18.559kghm^-21.565kgkhm^-2,分别是纯林的1.21倍、1.23倍和1.14 倍,其中林下植被细根占有较为重要位置,对细根分布与土壤性质的相关分析表明,细根的垂直分布与土壤全N的相关性最强(0.87-0.89)。  相似文献   

14.
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.  相似文献   

15.
桉树人工林间种山毛豆对提高土壤肥力和促进林木生长有极其显著的作用。间种5年后,林地表层土壤有机质和全量养分N、P、K的质量分数,分别为18.21kg/hm^2、0.85kg/hm^2、0.43kg/hm^2、1.30kg/hm^2,而对照林地分别为13.70kg/hm^2、0.56kghm^2、0.34kg/hm^2、1.10kg/hm^2;林地土壤有效养分含量显著提高;土壤结构和土壤水分物理性质显著改善;桉树生长量显著增加,刚果W5桉平均株高增长16%,平均胸径增长22%,单位面积的木材蓄积量增加59%。  相似文献   

16.
The cycling of base cations (K, Ca, Mg, and Na) was investigated in a boreal balsam fir forest (the Lake Laflamme Watershed) between 1999 and 2005. Base cation budgets were calculated for the soil rooting zone that included atmospheric deposition and soil leaching losses, two scenarios of tree uptake (whole-tree and stem-only harvesting), and three scenarios of mineral weathering, leading to six different scenarios. In every scenario there was a net accumulation of Mg within the soil exchangeable reservoir, while Ca accumulated in four scenarios. Potassium was lost in five of the six scenarios. Contrary to Ca and Mg, immobilization of K within tree biomass (69 mol x ha(-1) x yr(-1)) was the main pathway of K losses from the soil exchangeable reservoir, being five times higher than losses via soil leaching (14 mol x ha(-1) x yr(-1)). The amounts of K contained within the aboveground biomass and the exchangeable soil reservoir were 3.3 kmol/ha and 4.2 kmol/ha, respectively. Whole-tree harvesting may thus remove 44% of the K that is readily available for cycling in the short term, making this forest sensitive to commercial forestry operations. Similar values of annual K uptake as well as a similar distribution of K between tree biomass and soil exchangeable reservoirs at 14 other coniferous sites, distributed throughout the boreal forest of Quebec, suggest that the Lake Laflamme Watershed results can be extrapolated to a much larger area. Stem-only harvesting, which would reduce K exports due to biomass removal by 60%, should be used for these types of forest.  相似文献   

17.
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.  相似文献   

18.
In this study, mangrove seedlings (Kandelia obovata (S. L.)) were cultivated in rhizo-boxes, which contain sediments collected from natural mangrove forest and modified with different rates of sulphate and phosphate. The fraction distributions of Zn, Cd, Cu, Ni and Pb in rhizosphere and non-rhizosphere sediments were studied by using a sequential extraction method. Metal concentrations in plant tissues and iron plaque on root surface were also determined to reveal migration variation of heavy metals in the plant-sediment system. The results showed that the activities of K. obovata roots enhance the reducible metals while reducing acid-extractable and oxidisable metals; sulphur amendment benefits the combination of metal ions with S2– and therefore reduces the bioavailability of metal pollutants; addition of sulphur also improves the content of iron plaque on the root surface, which plays an important role in metal accumulation by K. obovata root tissue; the addition of sulphur markedly reduces the concentration of Cd in roots, but significantly enhanced the concentrations of Cu, Zn, Ni and Pb in roots. The results indicate that sulphur and phosphorus content in mangrove sediment, and the growth of mangrove plant can significantly influence the migration of heavy metals in the mangrove wetland ecosystem.  相似文献   

19.
Li J  Richter DD  Mendoza A  Heine P 《Ecology》2008,89(10):2911-2923
In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号