首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
• Various low-cost adsorbents are studied for capturing urban stormwater pollutants. • Adsorbents are selected based on both pollutant adsorption and unexpected leaching. • Application modes of adsorbents influence their utilization efficacy in practice. Stormwater represents a major non-point pollution source at an urban environment. To improve the treatment efficacy of stormwater infrastructure, low-cost adsorbents have increasingly gained attention over the past decades. This article aims to briefly discuss several key aspects and principles for utilization of low-cost adsorbents for urban stormwater treatment. To determine whether a low-cost adsorbent is suitable for stormwater treatment, two aspects should be carefully assessed, including: 1) its adsorption mechanisms and behaviors that can influence the binding stre.g.,h, adsorption kinetics, and treatment capacity; and 2) unwanted chemical leaching patterns that can affect the extent of water quality degradation. Furthermore, the application mode of an adsorbent in the system design influences the utilization efficiency. Adsorbents, after dosed to soil media in infrastructure, would eventually become ineffective after oversaturation. In contrast, standalone filters or innovative composite adsorbents (e.g., adsorbent-coated mulch chips) can enable a long-lasting adsorption due to periodic replacement with fresh adsorbents. The aforementioned principles play a key role in the success of urban stormwater treatment with low-cost adsorbents.  相似文献   

2.
Lithium manganese oxide–based adsorbents have been developed for the recovery of lithium from seawater. To maximize the recovery efficiency, it is important to prevent microfouling of lithium adsorbents by marine bacteria. To identify the marine bacteria that cause biofouling against the lithium adsorbents, lithium adsorbents were installed into a non-coated frame or a frame coated with an antifouling agent soaked in seawater. Microorganisms from the surface of lithium adsorbents were collected for 30 days at 10-day intervals, cultured in marine broth, isolated, and identified by 16S rDNA sequencing. Pseudoalteromonas and Vibrio were constituted to 35.6 and 28.8 % of total isolates, respectively, and were predominant in the non-coated frame, whereas Vibrio was poorly isolated (2.3 %) from the antifouling agent–coated frame. In this study, antifouling strategy for maximum lithium recovery efficiency in the marine area takes account of Pseudoalteromonas and Vibrio.  相似文献   

3.
Hydroxyl-enriched materials are promising boron adsorbents. However, the use of these materials is hampered by issues of separation, recovery, and selectivity, notably due to the presence of interfering ions. Therefore, we synthesized here a cheap magnetic nanopowder, which was further functionalized with polyvinyl alcohol and glycidol to produce boron-selective adsorbents. We studied their selectivity and removal efficiency using batch and fixed-bed systems. Sorption was studied at both concentrated and trace amounts of boron. Results show that nanopowders have 5.3–6.5 nm pore sizes and 145–203 m2/g surface areas, using Brunauer–Emmett–Teller analysis. Polyvinyl alcohol-functionalized particles removed 93 % of boron at 5 mg/L at pH 7 in 30 min, whereas only 68 % of boron was removed by glycidol-functionalized particles. However, at higher boron concentration, of 50 mg/L, glycidol-functionalized particles showed higher adsorption affinity of 68.9 mg/g. We conclude that internal hydroxyl groups of polyvinyl alcohol-functionalized particles are less accessible at higher boron concentration. This is the first report on magnesium ferrites for boron recovery. The spent adsorbents were separated easily from the aqueous media by an external magnet and repeatedly used. Overall, our findings demonstrated that the hydroxyl-enriched magnetic nanopowders are a better alternative to the existing boron adsorbents regarding magnetic separation, reusability, and selectivity.  相似文献   

4.
Adsorbents in the form of powders are commonly used to filtrate organic compounds in waters. However, this technique requires the separation of the solid phase from the solution after adsorption experiments. Here we propose the use of films as adsorbents. We synthesized polyaniline films by chemical oxidative polymerization of aniline on red ceramic brick. This film was tested to remove trimellitic, hemimellitic and pyromellitic acids as model molecules of the biodegradation of aquatic humic substances. We evaluated the effect of pH, contact time and initial concentration. Our results show that optimal adsorption conditions required 45 min of solid/liquid contact at pH 7 and an initial concentration of 20 mg/l. The maximum adsorption capacities for hemimellitic, trimellitic and pyromellitic acids are 154.83 for hemimellitic acid, 161.88 for trimellitic acid and 175.26 mg/g for pyromellitic acid. The adsorption efficiency of the polyaniline film decreased only by 13 % after four cycles. Overall, we conclude that polyaniline films are promising separable adsorbents compared to conventional adsorbents for removal of aromatic polycarboxylic acids from water.  相似文献   

5.

Chloramphenicol is a broad-spectrum bacterial antibiotic used against conjunctivitis, meningitis, plague, cholera, and typhoid fever. As a consequence, chloramphenicol ends up polluting the aquatic environment, wastewater treatment plants, and hospital wastewaters, thus disrupting ecosystems and inducing microbial resistance. Here, we review the occurrence, toxicity, and removal of chloramphenicol with emphasis on adsorption techniques. We present the adsorption performance of adsorbents such as biochar, activated carbon, porous carbon, metal–organic framework, composites, zeolites, minerals, molecularly imprinted polymers, and multi-walled carbon nanotubes. The effect of dose, pH, temperature, initial concentration, and contact time is discussed. Adsorption is controlled by π–π interactions, donor–acceptor interactions, hydrogen bonding, and electrostatic interactions. We also discuss isotherms, kinetics, thermodynamic data, selection of eluents, desorption efficiency, and regeneration of adsorbents. Porous carbon-based adsorbents exhibit excellent adsorption capacities of 500–1240 mg g?1. Most adsorbents can be reused over at least four cycles.

  相似文献   

6.
The complex capacity of different types of organic matters (OMs) for Cu was quantitatively studied by simulation experiments using different adsorbents prepared from the sediment in Taihu Lake. The free Cu was measured with ion selective electrode (ISE) and complex capacity was calculated using a conditional formation constant model. The result indicated that the complex capacity was 0.048 mmol·g-1, 0.009 and 0.005 mmol.g-1for raw sediment, sediment without DOM, sediment without insoluble organic matters but with DOM and sediment without OM. Insoluble organic matter played a major role in the sorption of Cu in sediment and it can adsorb most Cu from water column. In the solution, Cu mainly existed as a complex with DOM and the DOM-Cu complexation capacity was 327.87 mg. g-1. The change of TOC and pH indicated ion-exchange in the interaction between free Cu and DOM. When the Cu concentration in the experiment reached the complex capacity of DOM, precipitation was the major mechanism to remove Cu from water phase, which was observed from UV absorbance change of DOM, that is, its aromaticity increased while molecular weight decreased. The desorption result indi- cated that DOM was more capable of desorbing Cu from adsorbents without OM than adsorbent with OM. The desorbed quantity with DOM was 1.65, 1.78 and 2.25 times higher than that with water for adsorbents without OM, raw adsorbents (sediment) and adsorbents without DOM.  相似文献   

7.
研究了常温(18℃)条件下粉末活性炭(PAC)、颗粒活性炭(GAC)、天然膨润土和天然海泡石4种吸附剂对对氯苯酚(4-CP)的静态吸附规律,考察了投加灭活活性污泥对吸附性能的影响。结果表明:4种吸附剂对4-CP的吸附符合Langmiur和Freundlich吸附等温式,且吻合良好;4种吸附剂对4-CP的饱和吸附量不同,大小顺序为:PAC〉GAC〉天然膨润土〉天然海泡石;灭活活性污泥与4种吸附剂共存时,降低了4种吸附剂对4-CP的吸附能力。  相似文献   

8.
Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics, isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS on the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.  相似文献   

9.
Mercury adsorption by silica and maghemite nanoparticles (NPs) was studied with the aim of comparing their performance in the remediation of acid mine drainage (AMD) contaminated water. Calculated distribution coefficients (Kd) showed that both NPs are exceptional adsorbents. However, adsorbate coverage per unit area was 30 times higher for maghemite than for silica NPs, despite the latter having a surface area ~15 times greater. Maghemite adsorbed 75% of available Hg compared to 56% by silica, making it a more efficient sorbent than silica under AMD conditions. Kinetics and isotherm data for both adsorbents were fitted by the pseudo-second-order (R2 = 1) and the Freundlich (R2 ≥ 0.98) models, implying that adsorption to both NP types was by chemisorption. Adsorption increased with NP concentrations and pH and was enhanced in the presence of manganese and sulfate ions although adsorption to silica was inhibited in 1:2 Hg-to-Mn systems. Importantly, trends in simulated wastewater were replicated in actual AMD-contaminated water samples. This study highlights the fact that properties besides surface area and charge of adsorbents determine adsorbent performance, and superior attributes may not always lead to higher adsorption efficiencies.  相似文献   

10.
Three adsorbents including TiO2, Ti-Ce, and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution. The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO2 adsorbent prepared through hydrolysis. Rare earth (Ce and La) oxides and TiO2 exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption. The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h, and the pseudo-second-order model described the sorption kinetics well. The sorption isotherms fitted the Langmuir model well, and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g-1, respectively, at the equilibrium fluoride concentration of 1.0 mg·L-1, much higher than the 1.7 mg·g-1 on the TiO2. The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5. The electrostatic interaction played an important role in fluoride removal by the three adsorbents, and Fourier transform infrared (FTIR) analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.  相似文献   

11.

Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration of spent adsorbents. Biosorbents are prepared from a wide range of materials, including wood, bacteria, algae, herbaceous materials, agricultural waste, and animal waste. Commonly removed contaminants comprise dyes, heavy metals, radionuclides, pharmaceuticals, and personal care products. Preparation methods include coprecipitation, thermal decomposition, microwave irradiation, chemical reduction, micro-emulsion, and arc discharge. Adsorbents can be classified into activated carbon, biochar, lignocellulosic waste, clays, zeolites, peat, and humic soils. We detail adsorption isotherms and kinetics. Regeneration methods comprise thermal and chemical regeneration and supercritical fluid desorption. We also discuss exhausted adsorbent management and disposal. We found that agro-waste biosorbents can remove up to 68–100% of dyes, while wooden, herbaceous, bacterial, and marine-based biosorbents can remove up to 55–99% of heavy metals. Animal waste-based biosorbents can remove 1–99% of heavy metals. The average removal efficiency of modified biosorbents is around 90–95%, but some treatments, such as cross-linked beads, may negatively affect their efficiency.

  相似文献   

12.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2–8 for bentonite and 2–6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   

13.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2-8 for bentonite and 2-6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   

14.
The aim of this work was to estimate the sorption of pyrene from water solutions on mineral substrates, e.g., alumina, silica, and oil shale ash, from the Estonian thermal plant. Results obtained from this study indicate that the sorption of pyrene on mineral oxides and oil shale ash particles from water can be described with a linear equation. The sorptive capacity per weight of oil shale ash in aqueous systems was significantly lower compared with mineral adsorbents. The distribution coefficient (Kd) for pyrene in the system with particles of oil shale ash was 10–12 times lower as than for mineral adsorbents.  相似文献   

15.
Arsenic (V) adsorption on manganese oxide coated rice wastes was investigated in this study. The modified adsorbents were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and pH measurements to determine the point of zero charge. Batch adsorption equilibrium experiments were conducted to study the effects of pH, contact time, and initial concentration on arsenic removal efficiency. The adsorption capacity of rice waste was significantly improved after modification with permanganate. The Langmuir isotherm model fitted the equilibrium data better than the Freundlich model which confirms surface homogeneity of the adsorbent. Maxima adsorption capacities are determined as 10 and 12 mg/g at pH 3 for manganese oxide coated rice husk and straw, respectively. The adsorption energy indicates that the adsorption process may be dominated by chemisorption. Pseudo-second-order rate equation described the kinetics sorption of arsenic with good correlation coefficients, better than a pseudo-first-order equation. Manganese oxide coated rice husk and straw appear to be promising low cost adsorbents for removing arsenic from water.  相似文献   

16.
Improved separations of a wide range of anions of environmental importance in scrubbers of waste incinerators were achieved by applying a Na2B4O7/NaOH composition gradient of low electrical conductivity in combination with suppressed ion chromatography. Fluoride, Acetate, Formiate and 16 other ions including Iodide could be separated within the same run in less than 20 minutes. The selective detection of small amounts of several anions in presence of excessive amounts of Chloride and Sulfate is discussed. Furtheron various adsorbents were tested for the removal of Phenol as a potential trouble shooting source in 5 ion chromatography. Depending on the analytical task and circumstances several adsorbents reveiled promising properties.  相似文献   

17.
Wang  Xue-Ting  Deng  Xudong  Zhang  Tuo-Di  Zhang  Xi  Shi  Wen-Pu  Lai  Jialiang  Zhou  Hongwei  Ye  Ya-Jing  Zhang  Chen-Yan  Yin  Da-Chuan 《Environmental Chemistry Letters》2022,20(1):81-90
Environmental Chemistry Letters - Global water pollution by organic dyes and metals may be solved by adsorption. In particular, hydrogel adsorbents display unique...  相似文献   

18.
Rapidly increasing concentration of CO2 in the atmosphere has drawn more and more attention in recent years, and adsorption has been considered as an effective technology for CO2 capture from the anthropogenic sources. In this paper, the attractive adsorbents including activated carbons and amine-modified materials were mainly reviewed and discussed with particular attention on progress in the adsorbent preparation and CO2 adsorption capacity. Carbon materials can be prepared from different precursors including fossil fuels, biomass and resins using the carbonization-activation or only activation process, and activated carbons prepared by KOH activation with high CO2 adsorbed amount were reviewed in the preparation, adsorption capacity as well as the relationship between the pore characteristics and CO2 adsorption. For the amine-modified materials, the physical impregnation and chemical graft of polyethylenimine (PEI) on the different porous materials were introduced in terms of preparation method and adsorption performance as well as their advantages and disadvantages for CO2 adsorption. In the last section, the issues and prospect of solid adsorbents for CO2 adsorption were summarized, and it is expected that this review will be helpful for the fundamental studies and industrial applications of activated carbons and amine-modified adsorbents for CO2 capture.  相似文献   

19.
Bottom ash and de-oiled soya have been evaluated as potential adsorbents for the removal of a water soluble azo dye. The characterization of the adsorbents has been performed using infrared spectroscopy and differential thermal analysis. A batch of adsorption method has been adopted for studying the effects of pH, adsorbate concentration, and particle size on the adsorption process. The experimental data were tested using Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich isotherms and their parameter constants were determined. The thermodynamics showed that the process is spontaneous and exothermic. The kinetic studies revealed that the adsorption process follows first-order kinetics. A fixed-bed adsorption experiment resulted in 89% and 94% saturation of bottom ash and de-oiled soya, respectively, indicating that both adsorbents can be potentially economical.  相似文献   

20.
Laboratory and field filtration experiments were conducted to study the effectiveness of As(V) removal for five types of adsorbent media. The media included activated alumina (AA), modified activated alumina (MAA), granular ferric hydroxide (GFH), granular ferric oxide (GFO), and granular titanium dioxide (TiO?). In laboratory batch and column experiments, the synthetic challenge water was used to evaluate the effectiveness for five adsorbents. The results of the batch experiments showed that the As(V) adsorption decreased as follows at pH 6.5: TiO? > GFO > GFH > MAA > AA. At pH 8.5, however, As(V) removal decreased in the following order: GFO = TiO? > GFH > MAA > AA. In column experiments, at pH 6.5, the adsorbed As(V) for adsorbents followed the order: TiO? > GFO > GFH, whereas at pH 8.5 the order became: GFO = TiO? > GFH when the challenge water containing 50 μg/L of As(V) was used. Field filtration experiments were carried out in parallel at a wellhead in New Jersey. Before the effluent arsenic concentration increased to 10 μg/L, approximately 58,000 and 41,500 bed volumes of groundwater containing an average of 47 μg/L of As(V) were treated by the filter system packed with GFO and TiO?, respectively. The As(V) adsorption decreased in the following sequence: GFO > TiO? > GFH > MAA > AA. Filtration results demonstrated that GFO and TiO? adsorbents could be used as media in small community filtration systems for As(V) removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号