首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory and field filtration experiments were conducted to study the effectiveness of As(V) removal for five types of adsorbent media. The media included activated alumina (AA), modified activated alumina (MAA), granular ferric hydroxide (GFH), granular ferric oxide (GFO), and granular titanium dioxide (TiO2). In laboratory batch and column experiments, the synthetic challenge water was used to evaluate the effectiveness for five adsorbents. The results of the batch experiments showed that the As(V) adsorption decreased as follows at pH 6.5: TiO2 > GFO > GFH > MAA > AA. At pH 8.5, however, As(V) removal decreased in the following order: GFO = TiO2 > GFH > MAA > AA. In column experiments, at pH 6.5, the adsorbed As(V) for adsorbents followed the order: TiO2 > GFO > GFH, whereas at pH 8.5 the order became: GFO = TiO2 > GFH when the challenge water containing 50 μg/L of As(V) was used. Field filtration experiments were carried out in parallel at a wellhead in New Jersey. Before the effluent arsenic concentration increased to 10 μg/L, approximately 58,000 and 41,500 bed volumes of groundwater containing an average of 47 μg/L of As(V) were treated by the filter system packed with GFO and TiO2, respectively. The As(V) adsorption decreased in the following sequence: GFO > TiO2 > GFH > MAA > AA. Filtration results demonstrated that GFO and TiO2 adsorbents could be used as media in small community filtration systems for As(V) removal.  相似文献   

2.
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au–Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.  相似文献   

3.
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.  相似文献   

4.
Phosphate removal from aqueous solution was explored using granular ferric hydroxide (GFH) as an inorganic adsorbent. Adsorption, desorption and kinetic studies were conducted on laboratory scale to evaluate the performance of GFH as an adsorbent for low concentrations of phosphate solution. The effect of pH on adsorption was investigated, and phosphate uptake was shown to decrease with an increase in solution pH, with maximum removal seen to occur at pH 3. The experimental data best fit the Temkin isotherm at both pH 3 and 4. Uptake of phosphate by GFH follows second-order kinetics, with the small particle range (76–200 μm) removing phosphate from the solution more rapidly than the larger particle range (710–850 μm). The kinetic results suggest that intra-particle diffusion is an important factor in phosphate adsorption onto GFH. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) were evaluated, and the results indicated that the adsorption process was endothermic and spontaneous. This study demonstrates that GFH has potential to be used as a cost-effective adsorbent for phosphate removal from aqueous solution.  相似文献   

5.
The adsorption of Sb(V) ions from aqueous solutions onto commercially available activated alumina (AA) was investigated. AA has a much higher adsorption capacity than presently used adsorbents. Sb(V) ions are likely adsorbed through electrostatic attraction and/or specific adsorption mechanism, while the optimum pH is found in the range of 2.8–4.3. The Sb(V) ions adsorption capacities increase with increasing temperature. The addition of nitrate, acetate, arsenite, chloride, and silicate ions affected Sb(V) ions adsorption only slightly, while the coexisting ascorbate, arsenate, phosphate, sulfate, EDTA, tartrate, and citrate ions substantially depressed Sb(V) ions adsorption.  相似文献   

6.
A laboratory-scale investigation was performed to study arsenic (As (V)) removal by negatively charged GE-HL nanofiltration (NF) membrane in simulated drinking water. Effects of As (V) concentration (0–200 μg·L?1), pH, and co-ions and counter-ions were investigated. The NF membrane presented good stability, and the rejection rates exceeded 90%. The rejection rates of As (V) decreased with the increase of As (V) concentration, while it increased with the increase of pH (reached 96% at pH 6.75). Moreover, a negative relationship was observed between the co-existing ions of Cl?, Na+, SO 4 2? , and Ca2+ and the removal of As (V), in which bivalent ions presented more significant effects than monovalent ions.  相似文献   

7.
In the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5?gL?1), flowrate (0.06–0.18?Lh?1), and initial As (III) concentration (100–1000?µgL?1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10?µgL?1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.  相似文献   

8.
Arsenic (As) spills occurred more frequently and sometimes polluted water sources in recent years in China. It is as urgent need to develop emergency treatment technologies to address the arsenic threat for large-scale water treatment plants. In response, we developed a chemical sedimentation technology to remove arsenic contaminants for water treatment plants. Bench-scale experiments were conducted to investigate the efficiency of arsenic removal and the influencing factors of the chemical sedimentation treatment process. The influencing factors included the choice and dosage of coagulants, the valence of arsenic and pH value of solution. The As(V) contaminants can be almost completely removed by ferric or alum coagulants. The As(III) contaminants are more recalcitrant to chemical sedimentation, 75% for ferric coagulant and 40% for alum coagulant. The quantitative results of arsenic removal load by different ferric or alum coagulants were presented to help determine the parameters for arsenic treatment technology. The dominant mechanism for arsenic removal is static combination, or adsorption of negative arsenic species onto positive ferric hydroxide or alum hydroxide flocs. The efficiency of this treatment technology has also been demonstrated by a real production test in one water treatment plant with arsenic-rich source water and one emergency response. This technology was verified to be quick to set-up, easy to operate and highly efficient even for high concentration of arsenic.  相似文献   

9.

To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1–2 mm. On the PES-LDH surface, nanosized CLDH (100–150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.

  相似文献   

10.
Titanium dioxide (TiO2) is a promising sorbent for As removal. There are two main and physico-chemically distinct polymorphs of TiO2 in nature, namely anatase and rutile. Since the difference of arsenic removal by the two polymorphs of TiO2 is now well known, study on the arsenic removal efficiency and the underlying mechanism is of great significance in developing new remediation strategies for As-polluted waters. Here batch experiments were carried out in combination with instrumental analysis of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) to investigate the effects, influential factors and mechanisms of As removal from aqueous solution by two types of nano TiO2 crystals. The adsorption behavior of anatase and rutile for As(V) and As(III) are well described by Freundlich equations. Anatase had higher As removal efficiency and adsorption capacity than rutile. Solution pH had no influence on the As adsorption of anatase TiO2, whereas the As removal by rutile TiO2 was increased by 7?C18% with pH from 4 to 10. Presence of accompanying anions such as phosphate, silicate, nitrate and sulfate, decreased the As(V) and As(III) removal by both crystals, with phosphate being the most effective. However, removal of As by rutile TiO2 was greatly enhanced in the presence of divalent cations i.e. Ca2+ and Mg2+. Shading of light decreased the removal of As(V) and As(III) of anatase by 15.5% and 17.5%, respectively, while a slight increase of As removal was observed in the case of Rutile TiO2. FT-IR characterization of As(V) or As(III)-treated nano TiO2 crystals indicated that both Ti-O and As-O groups participated in As adsorption. Both FT-IR and XPS analysis demonstrated that As(III) was photooxidated into As(V) when adsorbed by anatase under the light condition. Thus, the effect of crystal types and light condition on As removal should be taken into consideration when nano TiO2 is applied for As removal from water.  相似文献   

11.
Adsorption rates of Sb(V) ions on an activated alumina (AA) were analyzed by batchwise experiments, while the continuous adsorption, desorption, regeneration of AA, and multiple reuse cycles were studied by flow column tests. The adsorption rates increased quickly with the increases of shaking speed and operation temperature. The adsorbed Sb(V) ions were desorbed easily by a 50 mM NaOH solution, and a 41–90 times concentrated Sb(V) solution was yielded correspondingly. AA was effectively regenerated by desorption operation and ca. 93% of the initial adsorption capacity was retained after six times adsorption/desorption cycles.  相似文献   

12.
Arsenic (V) adsorption on manganese oxide coated rice wastes was investigated in this study. The modified adsorbents were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and pH measurements to determine the point of zero charge. Batch adsorption equilibrium experiments were conducted to study the effects of pH, contact time, and initial concentration on arsenic removal efficiency. The adsorption capacity of rice waste was significantly improved after modification with permanganate. The Langmuir isotherm model fitted the equilibrium data better than the Freundlich model which confirms surface homogeneity of the adsorbent. Maxima adsorption capacities are determined as 10 and 12 mg/g at pH 3 for manganese oxide coated rice husk and straw, respectively. The adsorption energy indicates that the adsorption process may be dominated by chemisorption. Pseudo-second-order rate equation described the kinetics sorption of arsenic with good correlation coefficients, better than a pseudo-first-order equation. Manganese oxide coated rice husk and straw appear to be promising low cost adsorbents for removing arsenic from water.  相似文献   

13.
14.
利用稀土基无机合成材料去除饮用水中砷的研究   总被引:20,自引:0,他引:20  
张昱  杨敏  王桂燕  黄霞 《环境化学》2001,20(1):70-75
本文研制了一种新型除砷吸附剂,即基于稀土金属铈的无机铈铁吸附剂,并对该吸附剂的除砷效果进行了评价.活性氧化铝和新型研制的铈铁吸附剂对As(Ⅴ)吸附平衡比较实验结果表明:活性氧化铝除砷的最佳 pH为 3.5-5.5,最大吸附量为86mg As(Ⅴ)·g-1;而铈铁吸附剂的pH适用范围广,在pH3-7的范围内具有较高的除砷性能,最大吸附量可达16.0mgAs(Ⅴ)·g-1,该吸附材料对As(Ⅴ)的吸附基本符合Freundlich型等温方程式,硬度、盐度和氟离子不干扰吸附过程,但磷酸根离子干扰材料对As(Ⅴ)的吸附、铈铁无机吸附材料在饮水除砷中具有比较大的应用前景.  相似文献   

15.
聚合氯化铝铁絮凝剂的性能研究   总被引:32,自引:2,他引:32  
高宝玉  王秀芬 《环境化学》1994,13(5):415-420
煤矸石是采煤过程之废料。本文利用煤矸石制备出了聚合氯化铝铁(PAFC):一种新型无机高分子絮凝剂,探讨了Fe^3+的稳定性与溶液离子强度之间的关系,发现溶液的离子强度越大,则产生Fe(OH)3沉淀时的PH越高。研究了PAFC水解产物的ζ电位及絮凝效果随PH的变化情况,比较了PAFC、PAC和PFS的除浊性能,PAFC在PH为7.0-8.2范围内除浊效果最佳,PAFC的除浊效果优于PAC。  相似文献   

16.
Biosorption properties of arsenate [As(V)] onto activated sludge were investigated in batch systems. The adsorption of As(V) onto sludge increased from 23 to 266 μg/g dry weight through the methylation of the activated sludge. This increase resulted from neutralization of carboxylic groups via the methylation process. The pH effect of As(V) uptake was also investigated and As(V) adsorption by methylated sludge decreased significantly at high pH (pH > 11) due to competition between As(V) and OH ions for binding sites distributed on sludge surfaces. In contrast, low pH favored As(V) adsorption by methylated sludge because of the elevated quantities of positively charged functional groups. The results suggest that methylated activated sludge may provide promising applications for the simultaneous removal and separation of As(V) from aqueous effluents.  相似文献   

17.
In this study, the adsorption characteristics of As(III) and As(V) from water and wastewater using polyacrylamide-grafted banana stem with quaternary ammonium functionality (PGBS-AE) were investigated. Infrared spectroscopic, and thermogravimetric analyses were performed to affirm the polymer grafting, functionality, morphology, and thermal stability. Batch experiments were carried out to understand the effect of contact time, concentration, pH, adsorbent dose, and temperature of the solution for the adsorption of As(III) and As(V) onto PGBS-AE. Equilibrium was achieved within 1 h and the optimum pH was found to be 9.0 and 3.0 for As(III) and As(V), respectively. Isotherm studies showed that the Langmuir equation fits best. Maximum adsorption capacities of 50 and 5.5?g?kg?1 were obtained for As(III) and As(V) at 30°C. The endothermic nature of adsorption was evident as the adsorption efficiency increased with temperature. The thermodynamic parameters were evaluated to explain the feasibility of adsorption and to predict the nature of adsorption. The competence of the adsorbent for practical purposes was also analyzed by treating with a fertilizer industry effluent sample. Studies pertaining to adsorbent regeneration and readsorption of As(III) and As(V) were carried out for four consecutive cycles.  相似文献   

18.
腐殖酸对As(V)在覆铁砂介质中吸附行为的影响   总被引:2,自引:0,他引:2  
对腐殖酸(HA)进行了成分分析及红外表征,并从HA浓度、pH值、As(Ⅴ)初始浓度等方面,研究了HA对As(Ⅴ)在覆铁砂介质中吸附行为的影响.结果表明,随着HA浓度的升高,总砷去除率逐渐降低.当HA浓度增加到25mg.l-1时,与不存在HA条件下相比,总砷去除率降低了12%左右.溶液pH值影响As(Ⅴ)的去除,pH值从6升高到8时,总砷去除率从52.1%降到了39%.其中的作用机理主要是HA与As(Ⅴ)在覆铁砂表面形成竞争吸附,HA争夺了As(Ⅴ)的吸附点位.此外,HA与Fe(Ⅲ)的络合作用也是导致覆铁砂对砷的去除率降低的一个重要原因.  相似文献   

19.
Availability of colloidal ferric oxides to coastal marine phytoplankton   总被引:5,自引:0,他引:5  
Cell growth of a coastal marine diatom, Phaeodactylum tricornutum (stock cultures), and two red tide marine flagellates, Heterosigma akashiwo and Gymnodinium mikimotoi (stock cultures), in the presence of soluble chelated Fe(III)-EDTA (1:2) and of four different phases of ferric oxide colloids were experimentally measured in culture experiments at 20°C under 3000 lux fluorescent light. Soluble Fe(III)-EDTA induced the maximal growth rates and cell yields. The short-term uptake rate of iron by H. akashiwo in Fe(III)-EDTA medium was about eight times faster than that in solid amorphous hydrous ferric oxide (Fe2O3·xH2O) medium. In culture experiments supplied with four different ferric oxide forms, the orders of cell yields are amorphous hydrous ferric oxide>-FeOOH (lepidocrocite)>Fe5O7(OH)·4H2O (hydrated ferric oxyhydroxide polymer >-FeOOH (goethite). The specific growth rates () at logarithmic growth phase in Fe(III)-EDTA, amorphous hydrous ferric oxide and -FeOOH media were significantly greater than those in Fe5O7 (OH)·4H2O and -FeOOH media. The thermodynamically stable forms such as Fe5O7(OH)·4H2O and -FeOOH supported a little or no phytoplankton growth. The iron solublities and/or proton-promoted iron dissolution rates of these colloidal ferric oxides in seawater at 20°C were determined by simple filtration techniques involving -activity measurements of 59Fe. The orders of solubilities and estimated dissolution rate constants of these ferric oxides in seawater were consistent with that of cell yields in the culture experiments. These results suggest that the availability of colloidal iron to provide a source of iron for phytoplankton is related to the thermodynamic stability and kinetic lability of the colloidal ferric oxide phases, which probably control the uptake rate of iron by phytoplankton.  相似文献   

20.
Removal of selenite [Se (IV)] from aqueous solution on to industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide as adsorbent was investigated in the present article. Maximum adsorption was found to be at pH 4.0. Pretreated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of selenite compared to untreated adsorbent. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the pretreated and untreated adsorbents was found to be 15.63 and 6.04?mg?g?1, respectively. The adsorption process fit into the second-order kinetics. Thermodynamic parameters show that the adsorption process is spontaneous and endothermic in the temperature range 32 to 60°C. Coexisting anions vanadate and phosphate significantly affect the adsorption of selenite for both the pretreated and untreated adsorbents. Molybdate, thiocyanate, sulphate, nitrate and chloride do not significantly affect the removal of selenite for pretreated adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号