首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management‐effectiveness scores are used widely by donors and implementers of conservation projects to prioritize, track, and evaluate investments in protected areas. However, there is little evidence that these scores actually reflect the capacity of protected areas to deliver conservation outcomes. We examined the relation between indicators of management effectiveness in protected areas and the effectiveness of protected areas in reducing fire occurrence in the Amazon rainforest. We used data collected with the Management Effectiveness Tracking Tool (METT) scorecard, adopted by some of the world's largest conservation organizations to track management characteristics believed to be crucial for protected‐area effectiveness. We used the occurrence of forest fires from 2000 through 2010 as a measure of the effect of protected areas on undesired land‐cover change in the Amazon basin. We used matching to compare the estimated effect of protected areas with low versus high METT scores on fire occurrence. We also estimated effects of individual protected areas on fire occurrence and explored the relation between these effects and METT scores. The relations between METT scores and effects of protected areas on fire occurrence were weak. Protected areas with higher METT scores in 2005 did not seem to have performed better than protected areas with lower METT scores at reducing fire occurrence over the last 10 years. Further research into the relations between management‐effectiveness indicators and conservation outcomes in protected areas seems necessary, and our results show that the careful application of matching methods can be a suitable method for that purpose. Vinculación de Indicadores de Efectividad de Manejo con los Efectos Observados de la Ocurrencia de Fuego en Áreas Protegidas en la Amazonia  相似文献   

2.
Although marine protected areas can simultaneously contribute to biodiversity conservation and fisheries management, the global network is biased toward particular ecosystem types because they have been established primarily in an ad hoc fashion. The optimization of trade‐offs between biodiversity benefits and socioeconomic values increases success of protected areas and minimizes enforcement costs in the long run, but it is often neglected in marine spatial planning (MSP). Although the acquisition of spatially explicit socioeconomic data is perceived as a costly or secondary step in MSP, it is critical to account for lost opportunities by people whose activities will be restricted, especially fishers. We developed an easily reproduced habitat‐based approach to estimate the spatial distribution of opportunity cost to fishers in data‐poor regions. We assumed the most accessible areas have higher economic and conservation values than less accessible areas and their designation as no‐take zones represents a loss of fishing opportunities. We estimated potential distribution of fishing resources from bathymetric ranges and benthic habitat distribution and the relative importance of the different resources for each port of total catches, revenues, and stakeholder perception. In our model, we combined different cost layers to produce a comprehensive cost layer so that we could evaluate of trade‐offs. Our approach directly supports conservation planning, can be applied generally, and is expected to facilitate stakeholder input and community acceptance of conservation.  相似文献   

3.
Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant‐free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long‐term conservation will require land‐use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging.  相似文献   

4.
5.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   

6.
Abstract: Researchers and conservation managers largely agree on the relevance of traditional ecological knowledge for natural resource management in indigenous communities, but its prevalence and role as societies modernize are contested. We analyzed the transmission of traditional knowledge among rural local people in communities linked to protected areas in Doñana, southwestern Spain. We studied changes in knowledge related to local practices in agriculture and livestock farming among 198 informants from three generations that cover the period in which the area transited from an economy strongly dependent on local ecosystem services to a market economy with intensified production systems. Our results suggest an abrupt loss of traditional agricultural knowledge related to rapid transformations and intensification of agricultural systems, but maintenance of knowledge of traditional livestock farming, an activity allowed in the protected areas that maintains strong links with local cultural identity. Our results demonstrate the potential of protected areas in protecting remaining bodies of traditional ecological knowledge in developed country settings. Nevertheless, we note that strict protection in cultural‐landscape‐dominated areas can disrupt transmission of traditional knowledge if local resource users and related practices are excluded from ecosystem management.  相似文献   

7.
Trade‐offs in ecosystem services (ES) have received increasing attention because provisioning services often come at the expense of biodiversity loss. When land‐use patterns are not maximally efficient relative to productivity, provisioning services, such as crop production, can often be increased without losing biodiversity. The Atlantic Forest (AF) encompasses dense, mixed, and seasonal forests and has high levels of endemism and anthropogenic threat. We examined trade‐offs between biodiversity and crop production in the AF to provide insights into land‐use management decisions. We developed a biodiversity metric that combines information on tree species richness, evolutionary distinctiveness, and rarity at the local level. We examined the extent to which the nature of ES trade‐offs differ among the 3 forest types. We assessed how annual deforestation rates and land management practices affect biodiversity and agricultural revenues. Finally, we tested whether it is possible to achieve the same total regional revenue without reducing biodiversity by improving local management practices. The 3 forest types had similar patterns in ES trade‐offs, although within mixed forest patterns differed. Biodiversity appeared to be more sensitive to land‐use change than crop revenues. Certain crops yielded up to 10 times higher values in some sites. Enhanced crop productivity may increase revenues without reducing biodiversity. Our results showed that to enhance human well‐being without further conversion of AF, maximizing crop productivity is needed . Increasing efficiency of management outcomes by maintaining higher biodiversity and increasing provisioning services depends on knowledge of forest type, the comparative advantage of planting crops in the best places, and preserving species in a balanced manner across forests.  相似文献   

8.
One of the key determinants of success in biodiversity conservation is how well conservation planning decisions account for the social system in which actions are to be implemented. Understanding elements of how the social and ecological systems interact can help identify opportunities for implementation. Utilizing data from a large‐scale conservation initiative in southwestern of Australia, we explored how a social–ecological system framework can be applied to identify how social and ecological factors interact to influence the opportunities for conservation. Using data from semistructured interviews, an online survey, and publicly available data, we developed a conceptual model of the social–ecological system associated with the conservation of the Fitz‐Stirling region. We used this model to identify the relevant variables (remnants of vegetation, stakeholder presence, collaboration between stakeholders, and their scale of management) that affect the implementation of conservation actions in the region. We combined measures for these variables to ascertain how areas associated with different levels of ecological importance coincided with areas associated with different levels of stakeholder presence, stakeholder collaboration, and scales of management. We identified areas that could benefit from different implementation strategies, from those suitable for immediate conservation action to areas requiring implementation over the long term to increase on‐the‐ground capacity and identify mechanisms to incentivize implementation. The application of a social–ecological framework can help conservation planners and practitioners facilitate the integration of ecological and social data to inform the translation of priorities for action into implementation strategies that account for the complexities of conservation problems in a focused way.  相似文献   

9.
Formal engagement of indigenous peoples in conservation is increasing globally and leads to multiple benefits to communities while contributing to national and international biodiversity goals and obligations. This and ongoing declines in biodiversity have led to calls to increase opportunities for indigenous people to engage in managing their estates. However, there is no overarching understanding of indigenous peoples’ involvement in conservation, which limits the identification of new opportunities. We amalgamated information across governments and large nongovernmental organizations in the megadiverse country of Australia to quantify the involvement of indigenous people in management of threatened species. We identified 153 Australian‐based projects undertaken by different indigenous groups around the nation in 2015 and 2016 that included explicit funds for management of threatened species or threatened ecosystems. Most were in remote parts of western and northern Australia. Almost one‐quarter of all threatened animals and 2% of threatened plants were the subject of some formal conservation action by indigenous people. Occurrence records for 1574 threatened species showed that 823 (89.2%) of 923 species recorded on indigenous peoples’ lands were not listed in management projects. This gap may represent new opportunities for conservation initiatives. Because at least 59.5% of Australia's threatened species occur on indigenous peoples’ lands, efforts to build appropriate and effective indigenous conservation alliances are vital. However, it is also important to recognize that threatened species are part of complex social, ecological, economic and cultural systems, and to achieve successful outcomes requires consideration of indigenous peoples’ priorities, rights, and obligations and relationships with their traditionally owned land and sea.  相似文献   

10.
To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core‐area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide‐ranging species and species with several close relatives. Small, medium‐sized, and data‐deficient species faced extinction from inadequate protection in PAs relative to wide‐ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land‐use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.  相似文献   

11.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

12.
The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape‐scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government‐established nature reserves and unmanaged open‐access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974–1989, 1989–1999, and 1999–2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open‐access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open‐access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989–1999 (111.4 ha/year) relative to 1974–1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989–1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999–2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community‐based conservation of TSMs within the government conservation network would benefit the conservation of the Tibetan region.  相似文献   

13.
Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human‐dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long‐term conservation of tigers requires that the species be able to meet some of its life‐history needs beyond the boundaries of small protected areas and within the working landscape, including multiple‐use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km2 Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166‐km2 cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell‐scale occupancy and segment‐scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected‐area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple‐use forests. Restrictions on human‐use in high‐quality tiger habitat in multiple‐use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes.  相似文献   

14.
Protected areas are a cornerstone for forest protection, but they are not always effective during times of socioeconomic and institutional crises. The Carpathian Mountains in Eastern Europe are an ecologically outstanding region, with widespread seminatural and old‐growth forest. Since 1990, Carpathian countries (Czech Republic, Hungary, Poland, Romania, Slovakia, and Ukraine) have experienced economic hardship and institutional changes, including the breakdown of socialism, European Union accession, and a rapid expansion of protected areas. The question is how protected‐area effectiveness has varied during these times across the Carpathians given these changes. We analyzed a satellite‐based data set of forest disturbance (i.e., forest loss due to harvesting or natural disturbances) from 1985 to 2010 and used matching statistics and a fixed‐effects estimator to quantify the effect of protection on forest disturbance. Protected areas in the Czech Republic, Slovakia, and the Ukraine had significantly less deforestation inside protected areas than outside in some periods; the likelihood of disturbance was reduced by 1–5%. The effectiveness of protection increased over time in these countries, whereas the opposite was true in Romania. Older protected areas were most effective in Romania and Hungary, but newer protected areas were more effective in Czech Republic, and Poland. Strict protection (International Union for Conservation of Nature [IUCN] protection category Ia‐II) was not more effective than landscape‐level protection (IUCN III‐VI). We suggest that the strength of institutions, the differences in forest privatization, forest management, prior distribution of protected areas, and when countries joined the European Union may provide explanations for the strikingly heterogeneous effectiveness patterns among countries. Our results highlight how different the effects of protected areas can be at broad scales, indicating that the effectiveness of protected areas is transitory over time and space and suggesting that generalizations about the effectiveness of protected areas can be misleading.  相似文献   

15.
There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote‐sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land‐use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land‐use zones of 3 communities. Land‐use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land‐use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses.  相似文献   

16.
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9‐year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well‐defined resource‐access rights; community respect for a flexible system of customary governance; long‐term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district‐wide coordination, which provided a broader spatial context for adaptive‐management decision making. Co‐Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi  相似文献   

17.
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus.  相似文献   

18.
Caught between ongoing habitat destruction and funding shortfalls, conservation organizations are using systematic planning approaches to identify places that offer the highest biodiversity return per dollar invested. However, available tools do not account for the landscape of funding for conservation or quantify the constraints this landscape imposes on conservation outcomes. Using state‐level data on philanthropic giving to and investments in land conservation by a large nonprofit organization, we applied linear regression to evaluate whether the spatial distribution of conservation philanthropy better explained expenditures on conservation than maps of biodiversity priorities, which were derived from a planning process internal to the organization and return on investment (ROI) analyses based on data on species richness, land costs, and existing protected areas. Philanthropic fund raising accounted for considerably more spatial variation in conservation spending (r2 = 0.64) than either of the 2 systematic conservation planning approaches (r2 = 0.08–0.21). We used results of one of the ROI analyses to evaluate whether increases in flexibility to reallocate funding across space provides conservation gains. Small but plausible “tax” increments of 1–10% on states redistributed to the optimal funding allocation from the ROI analysis could result in gains in endemic species protected of 8.5–80.2%. When such increases in spatial flexibility are not possible, conservation organizations should seek to cultivate increased support for conservation in priority locations. We used lagged correlations of giving to and spending by the organization to evaluate whether investments in habitat protection stimulate future giving to conservation. The most common outcome at the state level was that conservation spending quarters correlated significantly and positively with lagged fund raising quarters. In effect, periods of high fund raising for biodiversity followed (rather than preceded) periods of high expenditure on land conservation projects, identifying one mechanism conservation organizations could explore to seed greater activity in priority locations. Our results demonstrate how limitations on the ability of conservation organizations to reallocate their funding across space can impede organizational effectiveness and elucidate ways conservation planning tools could be more useful if they quantified and incorporated these constraints.  相似文献   

19.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   

20.
Cambodia has 57% forest cover, the second highest in the Greater Mekong region, and a high deforestation rate (1.2%/year, 2005–2010). Community forestry (CF) has been proposed as a way to reduce deforestation and support livelihoods through local management of forests. CF is expanding rapidly in Cambodia. The National Forests Program aims to designate one million hectares of forest to CF by 2030. However, the effectiveness of CF in conservation is not clear due to a global lack of controlled comparisons, multiple meanings of CF, and the context‐specific nature of CF implementation. We assessed the effectiveness of CF by comparing 9 CF sites with paired controls in state production forest in the area of Prey Long forest, Cambodia. We assessed forest condition in 18–20 randomly placed variable‐radius plots and fixed‐area regeneration plots. We surveyed 10% of households in each of the 9 CF villages to determine the proportion that used forest products, as a measure of household dependence on the forest. CF sites had fewer signs of anthropogenic damage (cut stems, stumps, and burned trees), higher aboveground biomass, more regenerating stems, and reduced canopy openness than control areas. Abundance of economically valuable species, however, was higher in control sites. We used survey results and geographic parameters to model factors affecting CF outcomes. Interaction between management type, CF or control, and forest dependence indicated that CF was more effective in cases where the community relied on forest products for subsistence use and income. Efectividad de la Silvicultura Comunal en el Bosque Prey Long, Camboya  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号