首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anaerobic treatment has become a technically as well as economically feasible option for treatment of liquid effluents after the development of reactors such as the upflow anaerobic sludge blanket (UASB) reactor, expanded granular sludge bed (EGSB) reactor, anaerobic biofilter and anaerobic fluidized bed reactor (AFBR). Considerable effort has gone into developing mathematical models for these reactors in order to optimize their design, design the process control systems used in their operation and enhance their operational efficiency. This article presents a critical review of the different mathematical models available for these reactors. The unified anaerobic digestion model (ADM1) and its application to anaerobic biofilm reactors are also outlined.  相似文献   

2.
取食品生产废水处理中试工程运行中现有的厌氧颗粒污泥进行活性抑制与恢复试验。通过慢性致毒与急性致毒作用的对比,分析酸性条件对颗粒污泥的抑制作用,研究颗粒污泥的耐酸性,并考察污泥活性恢复方法。结果表明:当进水pH=6.5,颗粒污泥活性受到轻微抑制,不影响系统的稳定运行;当pH值下降至4.5时,COD去除率和产甲烷量均趋于零。同时使用调节进水pH值、降低进水有机负荷、提高进水碱度以及调整水力停留时间等4种方法能有效恢复污泥活性,活性达到抑制前的80%左右。  相似文献   

3.
Wood processing effluents contain different types of phenolic compounds, from simple monomers to high molecular weight (MW) polyphenolic polymers, that can inhibit wastewater treatment. This work presents a comparative study of the methanogenic toxicity produced by three wood processing effluents (hardboard, fiberboard and BKME (kraft mill effluent)) using Pinus radiata, Eucalyptus and Tepa as feedstock (the last one being a native Chilean tree species). This study evaluates the influence of non-adapted granular and adapted flocculent sludge on forest industrial wastewater treatment as well as continuous anaerobic biodegradation of hardboard processing effluent using the upflow anaerobic sludge blanket (UASB). The adapted biomass (flocculent sludge) did not show any lag-phase signs. The 50% IC (the concentration causing 50% inhibition of methanogenic activity) was 4.3 g COD-effluent (chemical oxygen demand (COD)-of the effluent)/l and 2.8 g COD-effluent/l for the flocculent sludge and the granular sludge, respectively. The UASB system worked at low organic load rates (0.1-0.4 g COD/l d) with the COD removal ranging between 10 and 30%, and color removal did not occur under anaerobic conditions due to high MW. Indeed, the MW analysis indicates the presence of phenolic compounds over 25,000 Da in the anaerobic effluent.  相似文献   

4.
本文研究UASB反应器处理石灰法制浆的草浆蒸煮黑液,在较短时间内培养出首育良好沉淀性能和较高活性的厌氧颗粒污泥。并对其形态、结构和化学组份及不同生理类群的厌氧微生物特性等进行了观察和测试,结果表明厌氧颗粒污泥高活性的原因。为进一步探索厌氧颗粒污泥的形成机理提供了依据。  相似文献   

5.
To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and Methanospirillum hungatei were identified.  相似文献   

6.
The capacity of anaerobic granular sludge to remove selenate from contaminated wastewater was investigated. The potential of different types of granular sludge to remove selenate from the liquid phase was compared to that of suspended sludge and contaminated soil and sediment samples. The selenate removal rates ranged from 400 to 1500 microg g VSS(-1) h(-1), depending on the source of biomass, electron donor, and the initial selenate concentration. The granular structure protects the microorganisms when exposed to high selenate concentrations (0.1 to 1 mM). Anaerobic granular sludge "Eerbeek," originating from a UASB reactor treating paper mill wastewater, removed about 90, 50, and 36% of 0.1, 0.5, and 1 mM of Se, respectively, from the liquid phase when incubated with 20 mM lactate at 30 degrees C and pH 7.5. Selenite, elemental Se (Se(o)), and metal selenide precipitates were the conversion products. Enrichments from the anaerobic granular sludge "Eerbeek" were able to convert 90% of the 10-mM selenate to Se(o) at a rate of 1505 microg Se(VI) g cells(-1) h(-1), a specific growth rate of 0.0125 g cells h(-1), and a yield of 0.083 g cells mg Se(-1). Both microbial metabolic processes (e.g dissimilatory reduction) as well as microbially mediated physicochemical mechanisms (adsorption and precipitation) contribute to the removal of selenate from the Se-containing medium.  相似文献   

7.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   

8.
The government of India decided to launch a project to implement 16 full-scale Upflow Anaerobic Sludge Blanket (UASB) reactors (with a total capacity of 598,000 m(3)/d) in the Yamuna River basin under its Yamuna Action Plan (YAP). A polishing pond called the Final Polishing Unit (FPU) was utilized for post-treatment. This paper evaluates the sewage treatment efficiency of the combined system of full-scale UASB reactors and polishing ponds under Indian climatic conditions. Results have shown that the effluent from the sewage treatment plants (STPs) investigated failed to comply with applicable discharge standards in terms of BOD, SS, and fecal coliform removal. Therefore, it is proposed that such proper operation and maintenance as removing excess sludge and scum be conducted in order to increase treatment efficiency. Moreover, trained and experienced workers are also required to operate and maintain the systems, along with a scientific approach.  相似文献   

9.
对UASB反应器进行改型,得到UAFSB,并结合UASB反应器快速启动的驯化方式,比较分析用畜禽废水直接启动加颗粒活性炭与未加颗粒活性炭的运行过程和结果。试验结果表明:絮状污泥接种后经过54天的驯化,进料COD浓度由800mg/L提高到5000mg/L,去除率基本稳定在90%以上,均达到预期目的;在污泥中掺入颗粒活性炭,反应器的启动时间有所缩短、抗冲击能力有所加强。  相似文献   

10.
Abstract

Agricultural residues can be converted to methane-rich gas mixture. Anaerobic biomethane production is an effective process for conversion of a broad variety of agricultural residues to methane to substitute natural gas and medium calorific value gases. Methane generating bacteria (methanogens) and other microbes that help digest dying plants in anaerobic conditions. Agricultural solid residues (ASR) represent a potential energy resource if they can be properly and biologically converted to methane.  相似文献   

11.
污泥高固体厌氧消化研究进展   总被引:1,自引:0,他引:1  
厌氧消化是实现污泥的减量化、稳定化和资源化的重要手段,相对于传统的低浓度污泥厌氧消化工艺高固体污泥厌氧消化可以直接利用污水处理厂排放的脱水污泥,具有设施体积小、单位容积产气率较高和水耗及能耗较低等优势。本文综述了近年来污泥高固体消化的研究进展,从污泥高固体厌氧消化的基本特征出发,总结了污泥高固体厌氧消化的影响因素和对反应器的要求;同时对污泥高固体消化存在的搅拌不匀、传质传热困难、有机质降解率偏低、搅拌系统不成熟等问题作了简要分析,这些问题都还有待于深入研究解决。  相似文献   

12.
Improvement of the activity of anaerobic sludge by low-intensity ultrasound   总被引:1,自引:0,他引:1  
This paper aims to study the enhancement effect of low-intensity ultrasound on anaerobic sludge activity and the efficiency of anaerobic wastewater treatment. Dehydrogenate activity (DHA) and the content of coenzyme F(420) were detected to indicate the change of activity of anaerobic sludge induced by ultrasound at 35 kHz. Single-factor and multiple-factor optimization experiments showed that the optimal ultrasonic intensity and irradiation period were 0.2 W/cm(2) and 10 min, respectively, and the biological activity was enhanced dramatically under the optimal condition. The chemical oxygen demand (COD) removal efficiency was increased by ultrasonic treatment and the COD in the effluent was 30% lower than that of the control (without exposure). The hypothetical mechanism of biological activity enhancement by ultrasound was also discussed according to the results.  相似文献   

13.
陈玉谷  白威 《四川环境》1992,11(4):8-13
采用中温(34±2℃)全混合式厌氧反应器处理蒽酸和硫化烧碱草浆造纸黑液。对比厌氧发酵结合物化前或后处理两种方法进行试验,厌氧生物降解COD_(er)去除率分别为61.2~75.3%和34.9~46.2%,COD_(er)总去除率分别为80.0~87.6%和68.4~75.8%。在厌氧发酵稳态运行条件下,对发酵污泥中主要微生物类群和数量进行了研究。  相似文献   

14.
Economic evaluation of sewage treatment processes in India   总被引:1,自引:0,他引:1  
This paper evaluates the total annual cost including capital and operation and maintenance (O&M) costs for the up-flow anaerobic sludge blanket (UASB) and waste stabilization pond (WSP) systems operated in India. It also compares UASB and WSP systems with the activated sludge process (ASP) and biological aerated filter (BAF) systems in terms of total annual cost and chemical oxygen demand (COD) removal cost by assuming various annual interest rates and land prices. It was found that the relationship between capital and O&M costs per unit size of a UASB or WSP system and its treatment capacity can be established by a first-order equation. The relation between the cost of organic removal and capital or O&M cost for various sewage treatment systems at various annual interest rates revealed that, for the Indian context, UASB could be the most suitable option in terms of expenses and treatment efficiency.  相似文献   

15.
采用竖式SBR作为反应器,利用城市污水处理厂剩余污泥作为接种污泥,通过不间断运行培养出好氧颗粒污泥。实验结果表明,采用非限量曝气模式好氧颗粒污泥降解模拟污水的效果较好,其COD去除率可达98%以上。曝气量对好氧颗粒污泥的形成和稳定具有重要影响,当气速为26.5m/h时,好氧颗粒污泥的性状和处理有机废水效果最佳。同时好氧颗粒污泥对pH值的变化不明显,当pH为5—8范围内,其COD去除率都可达到85%以上。但是未经驯化的好氧颗粒污泥对对硝基苯酚和对氯苯酚两种芳香类有机物较敏感,而对硝基苯酚对其毒性更大。当对硝基苯酚和。对氯苯酚浓度为10mg/L时,其COD去除率仅为42.5%和52%。  相似文献   

16.
A mathematical model for a hybrid anaerobic reactor (HAR), which uses self-immobilized anaerobic bacterial granules under completely fluidized condition, has been developed. Stoichiometry of glucose fermentation into methane has been considered in this model. The model includes: (1) a biofilm model which describes substrate conversion kinetics within a single granule; (2) a bed fluidization model which describes the distribution of biogranules within the fluidized bed and (3) a reactor model which links the above two to predict the substrate and products concentration profile along the reactor height. Product and pH inhibition for each group of bacteria has been considered in the kinetic model. The spatial distribution of each group of anaerobic bacteria within granules has been found to play a vital role in bringing about the conversion. Experiments were conducted in the reactor using a synthetic effluent containing glucose as the carbon source to study the treatment efficiency. The model was simulated first assuming a 3-layered distribution [MacLeod, F.A., Guiot, S.R., Costerton, J.W., 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology 56, 1598-1607.] of anaerobic bacteria within granules and then homogeneous distribution [Grotenhuis, J.T.C., Smit, M., Plugge, C.M., Yuansheng, X., van Lammeren, A.A.M., Stams, A.J.M., Zehnder, A.J.B., 1991. Bacterial composition and structure of granular sludge adapted to different substrates. Applied and Environmental Microbiology 57, 1942-1949.] of anaerobic bacteria. The predictions of model simulation with the assumption of layered structure closely represented the experimental data.  相似文献   

17.
吴力斌 《四川环境》1993,12(1):70-71
本文荟萃了荷兰、美国、德国、法国许多学者对厌氧颗粒污泥培养的研究,强调了颗粒化的机理仍是一个较为复杂而尚存在许多未知数的领域,并介绍了颗粒污泥的贮存。  相似文献   

18.
The upflow anaerobic sludge blanket (UASB) process is reported to be a sustainable technology for domestic wastewaters treatment in developing countries and for small communities. However, the inability of UASB process to meet the desired disposal standards has given enough impetus for subsequent post treatment. In order to upgrade the UASB based sewage treatment plants (STPs) to achieve desired effluent quality for disposal or for reuse, various technological options are available and broadly differentiated as primary post-treatment for the removal of organic and inorganic compounds and suspended matter; secondary post-treatment for the removal of hardly degradable soluble matter, colloidal and nutrients; and polishing systems for removals of pathogens. Hence, this paper discusses the different systems for the treatment of UASB reactor effluent treating sewage. Additionally, a comparative review, an economic evaluation of some of the emerging options was conducted and based on the extensive review of different integrated combination, i.e. UASB-different aerobic systems, a treatment concept based on natural biological mineralization route recognized as an advanced technology to meet all practical aspects to make it a sustainable for environmental protection, resource preservation and recovering maximum resources.  相似文献   

19.
Piggery wastes must be treated before their disposal. The high solids content and high chemical oxygen demand of piggery wastes indicated that anaerobic biological treatment could be successfully applied as primary treatment. For that reason, a comparison between upflow anaerobic sludge bed reactor (UASB) and anaerobic fixed bed reactor (AFBR) at a similar organic volumetric loading rate of 5 kg DQO/m3 day was carried out. 60% of the piggery waste COD was removed with the AFBR compared to 40% with the UASB, thus showing a better performance of the AFBR. After 1-h sedimentation secondary process, both anaerobic effluents were treated by ionic exchange with natural zeolite due to their high values of ammoniacal nitrogen (NH+4 plus free NH3). The high removal of nutrients reported (90%) shows zeolite to be a good choice as tertiary treatment.  相似文献   

20.
采用多级内循环厌氧反应器MIC/上升式厌氧反应器UASB串联工艺处理柠檬酸生产排放的高浓度有机废水,其中厌氧处理段的COD去除率>94%,整体COD去除率可达98.3%左右.最终排放口出水COD平均值为190 mg/L,pH值为6~9,达到柠檬酸行业废水排放标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号