首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

2.
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production.  相似文献   

3.
We examined nitrogen transport and wetland primary production along hydrologic flow paths that link nitrogen‐fixing alder (Alnus spp.) stands to downslope wetlands and streams in the Kenai Lowlands, Alaska. We expected that nitrate concentrations in surface water and groundwater would be higher on flow paths below alder. We further expected that nitrate concentrations would be higher in surface water and groundwater at the base of short flow paths with alder and that streamside wetlands at the base of alder‐near flow paths would be less nitrogen limited than wetlands at the base of long flow paths with alder. Our results showed that groundwater nitrate‐N concentrations were significantly higher at alder‐near sites than at no‐alder sites, but did not differ significantly between alder‐far sites and no‐alder sites or between alder‐far sites and alder‐near sites. A survey of 15N stable isotope signatures in soils and foliage in alder‐near and no‐alder flow paths indicated the alder‐derived nitrogen evident in soils below alder is quickly integrated downslope. Additionally, there was a significant difference in the relative increase in plant biomass after nitrogen fertilization, with the greatest increase occurring in the no‐alder sites. This study demonstrates that streamside wetlands and streams are connected to the surrounding landscapes through hydrologic flow paths, and flow paths with alder stands are potential “hot spots” for nitrogen subsidies at the hillslope scale.  相似文献   

4.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

5.
Perennial forages may be ideally suited for fertilization with slow N release amendments such as composts, but difficulties in predicting N supply from composts have limited their routine use in forage production. A field study was conducted to compare the yield and protein content of a binary legume-grass forage mixture and a grass monocrop cut twice annually, when fertilized with diverse composts. In all three years from 1998-2000, timothy (Phleum pratense L.)-red clover (Trifolium pratense L.) and timothy swards were fertilized with ammonium nitrate (AN) at up to 150 and 300 kg N ha(-1) yr(-1), respectively. Organic amendments, applied at up to 600 kg N ha(-1) yr(-1) in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC), or sewage sludge (SSLC), plus liquid dairy manure (DM). Treatments DM at 150 kg N ha(-1) yr(-1) and CSC at 600 kg N ha(-1) yr(-1) produced cumulative timothy yields matching those obtained for inorganic fertilizer. Apparent nitrogen recovery (ANR) ranged from 0.65% (SSLC) to 15.1% (DMC) for composts, compared with 29.4% (DM) and 36.5% (AN). The legume component (approximately 30%) of the binary mixture acted as an effective "N buffer" maintaining forage yield and protein content consistently higher, and within a narrower range, across all treatments. Integrating compost utilization into livestock systems that use legume-grass mixtures may reduce the risk of large excesses or deficits of N, moderate against potential losses in crop yield and quality, and by accommodating lower application rates of composts, reduce soil P and K accumulation.  相似文献   

6.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 ? + NO3 ? and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

7.
Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.  相似文献   

8.
ABSTRACT: Nutrient contents of canopy throughfall precipitation (TFP) from fertilized and unfertilized crops were analyzed and compared to determine the importance of fertilization on this source of nutrients in runoff. Continuous barley, corn, oats, rye, and wheat plots, that had been unfertilized since 1941 and divided and half fertilized since 1959, were studied. TFP soluble PO4, total PO4, and soluble K amounts were usually larger from fertilized plots in comparison to unfertilized ones but the differences usually were not significant. NH4-N and NO3-N may have been adsorbed from precipitation by corn canopies.  相似文献   

9.
/ Despite their fast growth, tropical plantations are a small sink of atmospheric carbon because they occupy only a small area in relation to other land uses worldwide. Proper design and management of plantations can increase biomass accumulation rates, making them more effective C sinks. However, fast-growing plantations can extract large amounts of nutrients from the soil, and site fertility declines may limit sustained plantation forestry after a few rotations. We measured aboveground biomass accumulation, carbon sequestration, and soil chemistry in three young plantations of 12 indigenous tree species in pure and mixed designs in the humid lowlands of Costa Rica. Annual biomass increments for the three mixed plantations ranged from 10-13 Mg/ha. The mixtures of four species gave higher biomass per hectare than that obtained by the sum of one fourth hectare of each species in pure plots. At this early age of the plantations, estimated annual C sequestration values were comparable to other reports from young plantations of exotic species commonly grown in the tropics. Four years after planting, decreases in soil nutrients were apparent in pure plots of some of the fastest growing species, while beneficial effects on soils were noted under other species. The mixed plots showed intermediate values for the nutrients examined and, sometimes, improved soil conditions. A mixture of fast and slower growing species yields products at different times, with the slower growing species constituting a longer term sink for fixed carbon. Examination of the role of tropical plantations as C sinks necessitates integrative approaches that consider rates of C sequestration, potential deleterious effects on ecosystem nutrients, and economic, social, and environmental constraints.KEY WORDS: Native trees; Aboveground biomass; Stem increments; Rotation length; Soil nutrients; Economics  相似文献   

10.
The overall objective of the present study was to determine the loading limits of composts that should be applied annually to irrigated wheat. We conducted a container experiment in a greenhouse during four years. It included eight treatments: sewage sludge compost (SSC) and cattle manure compost (CMC), each applied annually to a sandy soil, at rates equivalent to 3, 6, and 12 kg m(-2), and two controls, one fertilized and one unfertilized. Total dry matter (DM), grain production, and the amount of N, P, and K taken up by plants increased with increasing compost rate. Nitrogen uptake by the plants of the fertilized control was much higher than by the plants of the highest compost rate. Phosphorus and K uptake by the plants amended with the highest compost rate was much higher than by the fertilized control plants. Inorganic N quantity in the soil increased with increasing compost rate and with successive applications. The net N mineralization during the first year of wheat growth was very low, less than 3.5% of the applied organic N under all compost application rates. The contribution of the organic N mineralization increased during the second and third years. Most of the N increase in the compost treatment was found in the upper layer of 0 to 15 cm, whereas in the fertilized treatment N accumulated from the surface to the bottom of the container, 0 to 55 cm. The successive application of high rates of composts resulted in P and K accumulation in the soil profile.  相似文献   

11.
Fall season fertilization is a widely recommended practice for turfgrass. Fertilizer applied in the fall, however, may be subject to substantial leaching losses. A field study was conducted in Connecticut to determine the timing effects of fall fertilization on nitrate N (NO3-N) leaching, turf color, shoot density, and root mass of a 90% Kentucky bluegrass (Poa pratensis L.), 10% creeping red fescue (Festuca rubra L.) lawn. Treatments consisted of the date of fall fertilization: 15 September, 15 October, 15 November, 15 December, or control which received no fall fertilizer. Percolate water was collected weekly with soil monolith lysimeters. Mean log(10) NO3-N concentrations in percolate were higher for fall fertilized treatments than for the control. Mean NO3-N mass collected in percolate water was linearly related to the date of fertilizer application, with higher NO3-N loss for later application dates. Applying fall fertilizer improved turf color and density but there were no differences in color or density among applications made between 15 October and 15 December. These findings suggest that the current recommendation of applying N in mid- to late November in southern New England may not be compatible with water quality goals.  相似文献   

12.
Urban soils may suffer mild to severe degradation as a result of physical and chemical alterations. To reconstruct these soils, a new upper horizon must be created, usually through the application of organic matter, one source of which is biosolids. Different soil mixtures were evaluated with regard to loss of nitrates in percolates and the uptake and incorporation of nutrients and heavy metals into plant tissues. The experiment was conducted in trays; treatments were mixtures of biosolids and a coarse material (e.g., sand or pine wood sawdust), combined in different proportions. Randomized trays were seeded with a mix of tall fescue (Festuca arundinacea L.) and perennial ryegrass (Lolium perenne L.). Plant biomass was quantified. Nitrates in percolates were measured, as were nutrients and heavy metals in mixtures and plant tissues. Plants accumulated substantially more N, and biomass was 40% higher, in the treatments with higher levels of biosolids. The same treatments released more nitrogen and resulted in higher percolate nitrate levels. Plants had normal concentrations of all nutrients, except nitrogen, which was low. Heavy metal concentrations were not significantly different among treatments. Based on the analysis of these data, the proportion of biosolids appears to be the most important factor affecting the quality of reconstructed soil and the rate of improvement. The type of coarse material used did not significantly affect the outcome.  相似文献   

13.
Spring and summer tillage are usually followed by irrigation before planting crops in California's summer-dry Mediterranean-type climate. Tillage treatments such as rototillage or disking are known to disturb the soil structure to different extents, but little is known about how the intensity of a tillage event and subsequent irrigation affect the microbial biomass, respiration, CO2 efflux, and mineral N of agricultural soils. We carried out an experiment with a Yolo silt loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent) with two tilled treatments (rototillage and disked and rolled) and a nontilled control. The soil was subsequently sampled throughout a 17-d period. Nine days after tillage, all treatments were lightly sprinkler-irrigated to bring the soil water potential above -10 kPa. After tillage, the soil ammonium and nitrate content increased rapidly relative to the control with highest increases in the disked soil. Mineral N remained higher in the tilled treatments after irrigation. Rototillage and disking increased the CO2 efflux of the soil within 24 h of the disturbance. The increase was higher in the disked soil, which was more than three times the CO2 efflux of the control soil at 0.25 h after tillage. This effect may be due to degassing of dissolved CO2 since microbial respiration did not increase in tilled soils. Irrigation increased the CO2 efflux of all treatments but this was most pronounced in the control soil, which had an order of magnitude increase in CO2 efflux after irrigation. An ancillary experiment carried out under similar conditions but with more frequent sampling showed that increases in CO2 efflux after irrigation were accompanied by increases in soil respiration. This study shows that different tillage implements affect CO2 efflux, nitrate accumulation, and microbial activity, and thus have different effects on soil and atmospheric environmental quality.  相似文献   

14.
Plant–soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3–5?years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3–5?years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.  相似文献   

15.
为研究广西坡耕地主要经济作物甘蔗、玉米和花生农民常规施肥及不施肥处理对植株生长情况、经济产量及养分径流流失的影响,探寻提高广西经济作物经济效益、减少成本、减少环境污染的最佳施肥量,在坡耕地,观测降雨过程的养分径流流失,运用SPSS统计分析软件对试验数据进行分析,寻找成本低、效益高的种植方法。结果表明,对照与常规施肥相比,甘蔗、玉米、花生作物的生长情况差异不明显。对照处理的玉米经济产量、生物产量、淀粉含量分别为851.42kg·667m-2 3640.4kg·667m-2.68.40%;比玉米(常规施肥)高100.62kg·667m-2.485.98kg·667m-2 7.5%;花生对照的粗脂肪比其常规施肥高了45g·kg-1;径流养分总氮、总磷、总钾、硝态氮、铵态氮径流流失总量最高的均是花生常规施肥,其次是甘蔗对照,最少的玉米对照。径流量与总氮、总磷、总钾、硝态氮、铵态氮的相关系数,常规施肥处理偏高于对照。玉米对照的养分径流流失总量最少;花生常规施肥养分径流率最大;玉米比花生更适合在广西肥沃的坡耕地中种植。  相似文献   

16.
Biomass production and carbon storage in short-rotation poplar plantations over 10 years were evaluated at the Hanyuan Forestry Farm, Baoying County, China. Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems ha(-1)) and three poplar clones (NL-80351, I-69 and I-72). Based on the model of total biomass production developed, total plantation biomass production was significantly different in the plantations. The ranking of the plantation biomass production by planting density was 1111>833 more more than 625>500 stems ha(-1), and by components was stem>root>or=branch>leaf for all plantations. At 10 years, the highest total biomass in the plantation of 1111 stems ha(-1) reached about 146 t ha(-1), which was 5.3%, 11.6% and 24.2% higher than the plantations of 833, 625 and 500 stems ha(-1), respectively. The annual increment of biomass production over 10 years differed significantly among initial planting densities and stand ages (p<0.01), but no significant difference was observed from age 7 to 10. Mean carbon concentration among all biomass components ranged from 42-50%, with the highest carbon concentrations in stems and the lowest in leaves. Over the study period, the dynamic pattern of total plantation carbon storage by planting density was similar to that of total biomass production. At age 10, the highest total plantation carbon storage in the plantation of 1111 stems ha(-1) reached about 72.0 t ha(-1), which was 5.4%, 11.9% and 24.8% higher than in the plantations of 833, 625 and 500 stems ha(-1), respectively. The annual carbon storage increment over 10 years differed significantly among initial planting densities and stand ages (p<0.01), and it showed a pattern similar to the annual biomass production increment of the plantations. The results suggest that biomass production and carbon storage potential were highest for planting densities of 1111 and 833 stems ha(-1) grown over 5- and 6-year cutting cycles, respectively. If 3- or 4-year cutting cycles are used, the planting density should be higher than 1111 stems ha(-1) (e.g., 1667 or 2500 stems ha(-1)). Based on the mean annual carbon storage for the plantation of 625 stems ha(-1), as an estimation, the mean carbon storage in the biomass of poplar plantations (excluding leaves) amounts to 3.75x10(7) t ha(-1)yr(-1) in China.  相似文献   

17.
Plant available nitrogen, belowground (root) biomass, soil nitrogen (N) mineralization and microbial biomass N (MBN) were studied for 12 years at the interval of 2 years (0, 2, 4, 6, 8, 10 and 12?years) and mine dump stability at the intervals of 6 years (0, 6 and 12?years) after re-vegetation on coal mine spoil site. Plant available nitrogen in revegetated mine spoil ranged from 4.51 to 6.59?μg?g(-1), net N-mineralization from 1.87 to 13.85?μg?g(-1)?month(-1), MBN from 10 to 22.63?μg?g(-1), and root biomass from 28 to 566 g(-2). Mining activity has caused a change in soil characteristics including plant available nutrients like nitrate-N, ammonium-N and phosphate-P by 70, 67, and 76?%, respectively, N-mineralization by 93?%, root biomass values by 97?% and MBN values by 91?% compared to forest ecosystems. Revegetation of mine spoil produced increase in root biomass values by 1.3, 7.6 and 17.2 times, mineral N values by 1.22, 1.43 and 1.79 times, N-mineralization values by 1.8, 5.2 and 12.6 times and MBN values by 1.6, 2.0, and 3.4 times in 2, 6 and 12?years, respectively. Below ground biomass was highly co-related with microbial biomass and plant available nutrients. N-mineralization, plant available nutrients and the clay content were positively correlated with age of revegetation (P?相似文献   

18.
Shrub encroachment into open woodland is a widespread phenomenon in semi-arid woodlands worldwide. Encroachment or woody thickening, is thought to result from overgrazing, changes in fire regimes and increased atmospheric carbon dioxide concentrations. Eighteen years after one-off shrub removal by ploughing we assessed the effects of four different land management systems resulting from two levels each of grazing (grazed, ungrazed) with and without ploughing, on the cover of landscape units, soil surface condition, diversity of understorey plants and density of shrubs. We recorded 2–7 times more patches under conventional conservation (unploughed-ungrazed) than the others treatments, and plant cover and diversity were greater on the two conservation (ungrazed) plots, irrespective of ploughing. Soils under shrubs and log mounds had greater indices of infiltration, stability and nutrients. Shrub density under the active pastoral (ploughed-grazed) treatment was two and a half times greater than that in other treatments, but results were not significant. The effects of different treatments on shrubs were largely species-specific. Overall, our results suggest that ploughing does not provide long-term control of encroaching shrubs.  相似文献   

19.
Secondary compounds are known to be associated with the resistance of conifer xylem against insects and fungi. The effects of long-term forest fertilization with nitrogen (N) or with N, calcium (Ca), and phosphorus (P) on secondary compounds in the xylem of 50-yr-old Scots pine (Pinus sylvestris L.) trees were examined. Xylem samples were collected from trees growing in three locations in southern Finland: Vilppula, Padasjoki, and Punkaharju. Forests were fertilized every fifth (Vilppula and Padasjoki) or tenth (Punkaharju) year since the 1950s. We compared concentrations of individual and total monoterpenes and resin acids in the heartwood and sapwood of Scots pine. Terpene emissions were analyzed from the sapwood and total phenolics from the heartwood. Fertilization did not have any significant effect on the concentrations and emissions of xylem monoterpenes. Concentrations of several individual terpenes in sapwood were positively correlated with the corresponding terpene emission. The concentrations of individual resin acids (i.e., abietic and dehydroabietic) decreased significantly in Punkaharju, but increased in the sapwood of N-fertilized trees compared with control ones at Padasjoki and Vilppula. The concentrations of resin acids in the heartwood were not significantly affected by fertilization. Both fertilization treatments decreased the total phenolic concentrations in the heartwood of trees growing in Padasjoki. There was a significant positive correlation between the total phenolics and total resin acid concentration. Overall, resin acids and phenolics seemed be more responsive than monoterpenes to N treatment. These results suggest that forest fertilization might cause slight changes in secondary compound concentrations of xylem, and thus might have significance in the decay resistance of wood.  相似文献   

20.
Environmental impacts of composting poultry litter with chemical amendments at the field scale have not been well quantified. The objectives of this study were to measure (i) P runoff and (ii) forage yield and N uptake from small plots fertilized with composted and fresh poultry litter. Two composting studies, aerated using mechanical turning, were conducted in consecutive years. Composted litter was collected at the completion of each study for use in runoff studies. Treatments in runoff studies included an unfertilized control, fresh (uncomposted) poultry litter, and litter composted with no amendment, H3PO4, alum, or a microbial mixture. An additional treatment, litter composted with alum plus the microbial mixture, was evaluated during the first year. Fertilizer treatments were applied at rates equivalent to 8.96 Mg ha(-1) and rainfall simulators were used to produce a 5 cm h(-1) storm event. Composted poultry litter, regardless of treatment, had higher total P concentrations than fresh poultry litter. Composting poultry litter resulted in reductions of N/P ratios by as much as 51%. Soluble reactive P concentrations were lowest in alum-treated compost, which reduced soluble P concentrations in runoff water by as much as 84%. Forage yields and N uptake were greatest from plots fertilized with fresh poultry litter. Composting poultry litter without the addition of C sources can increase P concentrations in the end product and surface runoff. This study also indicated that increased rates of composted poultry litter would be required to meet equivalent N rates supplied by fresh poultry litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号