首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene terephthalate (PET) has become the most favourable packaging material world-wide for beverages. The reason for this development is the excellent material properties of the PET material, especially its unbreakability and the very low weight of the bottles compared to glass bottles of the same filling volume. Nowadays, PET bottles are used for softdrinks, mineral water, energy drinks, ice teas as well as for more sensitive beverages like beer, wine and juices. For a long time, however, a bottle-to-bottle recycling of post-consumer PET packaging materials was not possible, because of the lack of knowledge about contamination of packaging polymers during first use or recollection. In addition, the decontamination efficiencies of recycling processes were in most cases unknown. During the last 20 years, PET recollection as well as recycling processes made a huge progress. Today, sophisticated decontamination processes, so-called super-clean recycling processes, are available for PET, which are able to decontaminate post-consumer contaminants to concentration levels of virgin PET materials. In the 1991, the first food contact approval of post-consumer PET in direct food contact applications has been given for post-consumer recycled PET in the USA. Now, 20 years after the first food approval of a PET super-clean recycling process, this article gives an overview over the world-wide progress of the bottle-to-bottle recycling of PET beverage bottles, e.g. the recollection amount of post-consumer PET bottles and the super-clean recycling technologies.  相似文献   

2.
Mechanical recycling of 100% post-consumer plastic waste into high-quality products has been performed. The chemical and physical properties of these recycled materials have been compared with similar products manufactured from virgin resins. The properties of a blow-moulded bottle prepared from 100% post-consumer high-density polyethylene (HDPE) showed that this recycled polymer exceeded the materials specifications for virgin plastic designs. Similarly, a sample of thermoplastic polyolefin (TPO, 100% polypropylene), obtained entirely from shredder residue (SR) displayed sufficient material strength for future separation and reprocessing.  相似文献   

3.
Without public contributions, recycling from domestic waste would not be possible. In order to support recycling projects it is important to try to understand who recycles, how they recycle, and why they recycle. This paper presents the results of a structured survey of 500 members of the public served by schemes to collect plastics waste for recycling. Data were gathered on the characteristics, behaviours and motivations of recyclers. The authors also sought to discover how the public perceive plastics compared to other materials, and as a recyclable material. Responses were collected in such a way that the awareness of the recyclability of materials could be compared with the recycling behaviour of respondents. An element of comparison was introduced between those served by a system of bottle banks (bring scheme) and those covered by a household collection (collect scheme). The survey results are reported and their implications for the management of post-consumer plastics waste collection schemes are discussed.  相似文献   

4.
Disposal of more than 300 tonnes waste glass daily derived from post-consumer beverage bottles is one of the major environmental challenges for Hong Kong, and this challenge continues to escalate as limited recycling channels can be identified and the capacity of valuable landfill space is going to be saturated at an alarming rate. For this reason, in the past ten years, a major research effort has been carried out at The Hong Kong Polytechnic University to find practical ways to recycle waste glass for the production of different concrete products such as concrete blocks, self-compacting concrete and architectural mortar. Some of these specialty glass-concrete products have been successfully commercialized and are gaining wider acceptance. This paper gives an overview of the current management and recycling situation of waste glass and the experience of using recycled waste glass in concrete products in Hong Kong.  相似文献   

5.
High-pressure, near-critical liquids were used as float-sink separation media for the microsortation of polyolefin mixtures and PET/PVC mixtures. Near-critical carbon dioxide was used for the refinement of the polyolefins, and sulfur hexafluoride was used to separate post-consumer PVC from PET. Preliminary experiments indicated that there was no overlap in the density ranges of post-consumer HDPE, LDPE and PP containers. There was no overlap in the PET and PVC densities, with the exception of a single PVC packaging material with a density in the PET range. These initial results indicated that a float-sink separation was a viable means of microsortation. Separations of 91% LDPE (1/8′ beads)/9% PP (1/8′ chopped strands) resin mixtures and mixed post-consumer polyolefin flakes were then conducted in a laboratory-scale, 1-I batch apparatus. This apparatus not only permitted the observation of the separation, but also enabled the separated fractions to be removed from the high-pressure environment. The results indicated that LDPE purity of greater than 98.9% was obtained in 3 min or less if (a) the fluid density was 0.018 g/cm3 greater than the PP density and only 0.002 g/cm3 less than the LDPE density, thereby providing the greatest buoyancy force for the removal of the PP, (b) the fluid was recirculated upward through the bed of mixed plastics, facilitating the upward movement of the PP, and (c) the loading was kept at levels below 40% by volume. HDPE purity of 99% was also attained with clean, dry, post-consumer mixed plastic flakes. The loadings for these separations were very low, however, due to the difficulty in agitating the mixed bed of plastics using fluid recirculation. An economic analysis of these microsortation processes indicated that the value of the sorted plastics relative to the mixed feed must increase by approx. $0.08/lb for the CO2-based separation and approx. $0.27/lb for the SF6-based separation to justify the implementation of these high-pressure processes.  相似文献   

6.
The global plastics production has increased annually and a substantial part is used for packaging (in Europe 39%). Most plastic packages are discarded after a relatively short service life and the resulting plastic packaging waste is subsequently landfilled, incinerated or recycled. Laws of several European and Asian countries require that plastic packaging waste collected from households has to be sorted, reprocessed, compounded and reused. These recycling schemes typically produce milled goods of poly(ethylene terephthalate) (PET), poly(ethylene) (PE), isotactic poly(propylene) (PP), mixed plastics, and agglomerates from film material. The present study documents the composition and properties of post-consumer polyolefin recyclates originating from both source separation and mechanical recovery from municipal solid refuse waste (MSRW). The overall composition by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) were determined and compared with the sorting results of the sorted fractions prior to the reprocessing into milled goods. This study shows that the collection method for the plastic packaging waste has hardly any influence on the final quality of the recyclate; however, the sorting and reprocessing steps influence the final quality of the recyclate. Although the mechanical properties of recyclate are clearly different than those of virgin polymers, changes to the sorting and reprocessing steps can improve the quality.  相似文献   

7.
Attaining recycling goals of 25 to 50% over the next few years will require substantial recycling of residential wastes. A combined program of curbside recycling of conventional post-consumer materials and collection and composting of both leaves and grass will yield a composite diversion rate of 12 to 21% by weight. But in many communities, particularly in the west central and south central states of the American heartland, implementation of such programs will result in a net increase in solid waste management costs. Case studies of four communities in Oklahoma are used to estimate the potential increase in first-year net costs that would result from implementing a combined recycling and yard waste composting program. The results are compared to survey data from Oklahoma and Florida that define the amount residents are likely to be willing to pay for the benefits of recycling. The potential to close the apparent willingness-to-pay gap through state subsidies is then assessed. Where state capital grants programs are insufficient to bridge the gap, and local officials are reluctant to impose costs that are not publicly supported, public education efforts will be needed to increase the value residents ascribe to the nonexclusive positive externalities and local nonmarket benefits of recycling.  相似文献   

8.
This report summarizes current developments in the United States and 18 other industrial countries regarding packaging waste. It presents available data concerning the types, amounts, and methods of managing such waste and provides information concerning the policies established or under consideration to reduce the amount of such waste being disposed. The countries discussed are all members of the Organisation for Economic Co-operation and Development (OECD).In recent years, waste disposal capacity has become more scarce in most OECD countries. As a result, waste management policies have focused on efforts to reduce and recycle major components of the waste stream. Packaging represents about one-third of municipal solid waste in many countries. Because of this, measures to reduce the amount and toxicity of packaging and to encourage its recycling are currently being considered in at least 18 OECD countries. In addition, the EC and the Nordic Council are developing programs to address packaging on a regional basis.The report is divided into four main sections. Section I summarizes available information for the OECD countries. The second section discusses waste generation and recycling rates for six types of packaging material: paper, glass, metal, plastic, wood, and composites. The third section discusses key questions raised by the information presented in the report. The fourth briefly discusses packaging waste issues facing the Congress.In general, the report finds, other countries use less packaging than the United States, recycle more of it, and are considering policy measures stronger than the measures generally being considered in America. As noted in detail, other countries have adopted or are developing requirements that:
• • set mandatory requirements for packaging waste reduction;
• • require reusable or refillable packaging;
• • impose taxes to discourage single-use packages;
• • prohibit the use of non-recyclable packaging,
• • prohibit or limit disposal of packaging, and
• • require manufacturers of packaging materials to collect and recycle post-consumer waste.
Perhaps the most fundamental issue raised by these approaches is whether local governments will continue to bear responsibility for funding and operating recycling programs or whether all or some of this responsibility might be shifted to industry. To date, this issue has not been joined in the Congress directly; however, there is a growing consensus in other countries concerning the advantages of industry responsibility.  相似文献   

9.
Technological improvements in automotive battery recycling   总被引:2,自引:0,他引:2  
Recycling of automotive batteries for the recovery of secondary lead is extremely important in Brazil, for the country does not possess large reserves of this metal. Lead is one of the most widely used metals in the world, but it is highly toxic, posing risks for humans and for the environment if not utilized or treated adequately. Industrial waste containing lead in Brazil are classified by the Brazilian Residue Code (NBR—10004:2004) as hazardous. The lead recycling process employed by the recycling industry in Brazil is the pyrometallurgical process in a rotary furnace. This process consists of four stages: (1) grinding of the battery to separate plastic, electrolyte and lead plates; (2) lead reduction in a rotary furnace; (3) separation of metallic lead from slag; and (4) refining of recycled lead. The purpose of this work is to propose process improvements aimed primarily at increasing production output by reducing the loss of lead in slag and particulates, thereby providing a healthier work environment in line with Brazilian environmental and labor laws.  相似文献   

10.
Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are also two collection schemes, either curb side or via drop-off locations. These different schemes have impact on total costs of collection at the municipal level. It can also influence the facility choices and network design. Therefore, a method which can compare costs of various collection schemes is needed.A comprehensive cost model was developed to compare costs of municipal collection schemes of PPW. The ‘municipal waste collection cost model’ is based on variables including fixed and variable costs per vehicle, personnel cost, container or bag costs as well as on emission costs (using imaginary carbon taxes). The model can be used for decision support when strategic changes to the collection scheme of municipalities are considered. The model takes into account the characteristics of municipalities, including urbanization degree and taxation schemes for household waste management.The model was applied to the Dutch case of post-consumer plastic packaging waste. Results showed that that in general post-separation collection has the lowest costs and curb side collection in urban municipalities without residual waste collection taxing schemes the highest. These results were supported by the conducted sensitivity analysis, which showed that higher source separation responses are negatively related to curb side collection costs. Greenhouse gas emission costs are a significant part of the total costs when collecting post-consumer plastic packaging waste due to the low density to weight ratio of the materials collect. These costs can amount to 15% of the total collection costs.  相似文献   

11.
Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production.Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions.Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement.  相似文献   

12.
This paper reviews databases on material recycling (primary as well as secondary production) used in life cycle assessments (LCA) of waste management systems. A total of 366 datasets, from 1980 to 2010 and covering 14 materials, were collected from databases and reports. Totals for CO2-equivalent emissions were compared to illustrate variations in the data. It was hypothesised that emissions from material production and the recycling industry had decreased over time due to increasing regulation, energy costs and process optimisation, but the reported datasets did not reveal such a general trend. Data representing the same processes varied considerably between databases, and proper background information was hard to obtain, which in turn made it difficult to explain the large differences observed. Those differences between the highest and lowest estimated CO2 emissions (equivalents) from the primary production of newsprint, HDPE and glass were 238%, 443% and 452%, respectively. For steel and aluminium the differences were 1761% and 235%, respectively. There is a severe lack of data for some recycled materials; for example, only one dataset existed for secondary cardboard. The study shows that the choice of dataset used to represent the environmental load of a material recycling process and credited emissions from the avoided production of virgin materials is crucial for the outcome of an LCA on waste management. Great care and a high degree of transparency are mandatory, but advice on which datasets to use could not be determined from the study. However, from the gathered data, recycling in general showed lower emission of CO2 per kg material than primary production, so the recycling of materials (considered in this study) is thus beneficial in most cases.  相似文献   

13.
The environmental burden of collecting recoverables from households is generally omitted from life-cycle analyses comparing the environmental outcome of using secondary material from post-consumer waste (PCW) with virgin feedstock. However, this burden can be considerable, depending upon the characteristics of the collection methods employed. Given that the basic objective of recycling is to secure environmental benefits, it is vital that the burden of collection through both bring/dropoff and kerbside schemes is taken into account if a valid assessment of the environmental balance resulting from PCW recycling is to be made. This paper presents survey data comparing the burden of collection for different types of recycling provision. It describes the site and spatial characteristics determining the amount of transport dedicated to collection at bring/drop-off sites. Predictor variables are identified as measures of these characteristics, and the survey data compared with them. A regression model to assess energy use at bring/drop-off sites with varying characteristics is then developed. The potential uses of the techniques presented include the evaluation of the environmental burdens of recycling provision at the waste collection authority and regional level, allowing more informed choices to be made in the development of recycling provision from an environmental standpoint.  相似文献   

14.
This research was conducted with the objective of determining and evidencing the social and environmental/economic results from the implementation of a reverse logistics program providing for the recycling, reuse, and, when necessary, final, environmentally correct disposal of post‐consumption products and product wastes by a multinational manufacturer of computer peripherals with an operation based in the city of São Paulo, Brazil. The reverse logistics process (logisticareversa, or, in this paper, LR) was intended to meet the objectives and principles of the regulatory framework defined in the National Solid Waste Policy (PNRS) in Brazil. A single case study was carried out. The results showed that after the adoption of the solid waste management policy, the study company no longer disposed of 1,413,552 kilograms (kg) of materials classified as mixed iron, polystyrene, cardboard, toner powder, and plastic in landfills. The LR process made a profit in two companies: the company surveyed made, in Brazilian reais (R), R$ 9,188,185.51, and the company contracted to carry out the process made, R$ 411,325.97. This latter profit is called by us the “social profit.” The measurement of the environmental/economic, social, and financial results by internalizing the expenses of the LR program into the costs of production shows that reuse and recycling better meets the needs of society and the company than landfilling these post‐consumption materials. Furthermore, the use of cost accounting allows the verification of other goals not indicated in the current model, such as the generation of employment, income, mitigation of environmental problems, and the profit earned by the company contracted to implement the LR process. We also conclude that cost accounting makes it possible to obtain necessary information for decision makers, who are seeking to neutralize environmental impacts and promote sustainable development, thus harmonizing the economic, social, and environmental aspects, to understand the impacts of the LR process.  相似文献   

15.
Environmental issues have been at the center of society's concerns for a long time. Recently, this kind of concern is growing even more due to the damage caused to the environment by electrical and electronic product waste. Based on this same concern, this work aimed to analyze, through a literature review, the production and treatment of electronic waste in today's world, with an emphasis on Brazil and China. The articles reviewed point to an increase in the production of this type of waste, in both Brazil and China, and reveal that the current processes of treatment of electronic waste mostly aim to obtain profit through the recovery of precious metals such as copper. This paper concluded that although Brazil is one of the major producers of e‐waste, more than 90% of its e‐waste has not had a proper final destination. This deficiency in e‐waste treatment in Brazil is mainly due to financial factors and the lack of a robust educational policy focused on the environment. Thus, this work suggests the implementation of an effective educational policy aimed at environmental conservation, as well as investments in research on recycling methods in Brazil, especially on the use of e‐waste as an aggregate in the manufacture of concrete.  相似文献   

16.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   

17.
This article presents a comparative analysis of the performance in formal and informal areas that deal with solid waste in Brazil. The article demonstrates that there has been significant progress in areas related to recycling and that this progress has been based mainly on informality and on the precarious labour conditions for the pickers of recyclable materials. The article also focuses on the problems found in the model for waste recovery that is being implemented in Brazil and that is based on allocation of precarious waste recovery facilities; this model has mostly small operational capabilities even in large municipalities. These problems are discussed in contrast to the great challenges imposed by the new legal framework of the country. Finally, the article proposes a categorisation of the technological models of material recovery facilities (MRFs) based on their degree of automation and nominal capacities in a manner similar to that used worldwide for incineration plants.  相似文献   

18.
针对电石渣浆处理的工艺流程和资源化途径进行了效益分析,工程实践表明:电石渣浆处理后,浆水回用作为生产用水,降低了乙炔生产成本.同时彻底解决电石渣含水率高的问题,利于企业开展资源化,值得在乙炔行业推广.  相似文献   

19.
Iron is an important basic resource for national economic development in China. It is of great strategic importance for the sustainable development of China's economy to study the utilization and circulation status of iron resources. In this paper, using the material flow and value chain analysis method, we quantitatively analyzed the value flow of iron resources in China. According to the value chain and price theory of element M, a value stream diagram of iron resources corresponding to the substance flow chart was plotted. Based on the previous material flow analysis result of iron resources, the diagram quantitatively depicted the value of the circulating flow of iron resources in China in 2011. The results show that by recycling materials, the value of the circulating flow of iron resources can bring considerable economic benefits to both producers and consumers. In the production stage, the expenditures of the entire economic system was reduced by 91.77 billion RMB by circulating iron and the income increased by 95 billion RMB by recycling home scrap, which was generated in the crude steel production stage. In the use stage of iron and steel products, the recycling of old scrap enabled the entire economic system to recover 370.78 billion RMB. It should be noted that analysis within a single framework of physical and economic characteristics of iron resources in the economic system can further extend the research chain of substance flow and value flow at the macro level, enhancing the economic value of substances flow research. In addition, by tracking and depicting the value flow cycle of elements, the improvement potentials and the value situations can be determined to provide useful information for conducting processing and technological innovation for waste minimization.  相似文献   

20.
What municipal recycling rate is socially optimal? One credible answer would consider the recycling rate that minimizes the overall social costs of managing municipal waste. Such social costs are comprised of all budgetary costs and revenues associated with operating municipal waste and recycling programs, all costs to recycling households associated with preparing and storing recyclable materials for collection, all external disposal costs associated with waste disposed at landfills or incinerators, and all external benefits associated with the provision of recycled materials that foster environmentally efficient production processes. This paper discusses how to estimate these four components of social cost to then estimate the optimal recycling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号