首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (alpha-Al(2)O(3)) and ferrihydrite (Fe(5)HO(8).4H(2)O). The Pb-sorbed minerals were placed in a simulated gastrointestinal tract (in vitro) to simulate ingestion of Pb-contaminated soil. The changes in Pb speciation were determined using extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge spectroscopy (XANES). Both corundum (sorption maximum of 2.13 g kg(-1)) and ferrihydrite (sorption maximum of 38.6 g kg(-1)) have been shown to sorb Pb, with ferrihydrite having a very high affinity for Pb. The gastric bioaccessible Pb for corundum was >85% for corundum when the concentration of Pb was >200 mg kg(-1). Bioaccessible Pb was not detectable at 4. However, much of the sorbed Pb will become bioaccessible under gastric conditions (pH 1.5-2.5) if this soil is ingested. Caution should be used before using these materials to remediate a soil where soil ingestion is an important exposure pathway.  相似文献   

2.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

3.
Agricultural drainage ditches serve as P transport pathways from fields to surface waters. Little is known about the spatial variation of P at the soil-water interface within ditch networks. We quantified the spatial variation of surficial (0-5 cm) soil P within vegetated agricultural ditches on a farm in Princess Anne, MD with an approximately 30-yr history of poultry litter application. Ditch soils from 10 ditches were sampled at 10-m intervals and analyzed for acid ammonium oxalate-extractable P, Fe, Al (P(ox), Fe(ox), Al(ox)), and pH. These variables were spatially autocorrelated. Oxalate-P (min = 135 mg kg(-1), max = 6919 mg kg(-1), mean = 700 mg kg(-1)) exhibited a high standard deviation across the study area (overall 580 mg kg(-1)) and within individual ditches (maximum 1383 mg kg(-1)). Several ditches contained distinct areas of high P(ox), which were associated with either point- or nonpoint-P sources. Phosphorus was correlated with Al(ox) or Fe(ox) within specific ditches. Across all ditches, Al(ox) (r = 0.80; p < 0.001) was better correlated with P(ox) than was Fe(ox) (r = 0.44; p < 0.001). The high level of spatial variation of soil P observed in this ditch network suggests that spatially distributed sampling may be necessary to target best management practices and to model P transport and fate in ditch networks.  相似文献   

4.
Influence of soil properties and aging on Cu partitioning and toxicity was assessed on 10 artificial soils constituted using a statistical design considering pH (5.5 and 7.5), organic matter (1-30% [w/w]), and clay content (5-35% [w/w]). Total Cu as well as water-, CaCl2-, and diethylene triamine pentaacetic acid (DTPA)-extracted Cu fractions were determined for each soil mixture. Ecotoxic effect was assessed by determining growth inhibition of barley (Hordeum vulgare L.) and compost worm (Eisenia fetida) mortality. Analyses were repeated after a 16-wk aging period of the soils at pH 7.5 (8 x 2-wk wetting and drying cycle). Results indicated that pH was the main factor controlling Cu partitioning, ahead of organic matter and clay content. Calcium chloride (0.5 M)-extracted Cu fractions showed the best correlation with toxic responses (r = 0.55-0.66; p < 0.05), while total and DTPA-extracted Cu concentrations could not explain differences in toxicity. Direct regressions between toxicity and soil properties (pH, organic matter, and clay content) provided better explanation of variance: r2= 0.50 (p = 0.00006) for compost worm mortality, r2= 0.77 (p < 0.00001) for barley shoot inhibition, and r2= 0.92 (p < 0.00001) for barley root inhibition. Copper toxicity was mainly influenced by pH and, to a lesser extent, by organic matter and clay content. Aging in organic soils revealed a slight reduction in ecotoxicity while an increase was observed in soils with low organic matter content. Further investigation using longer aging periods would be necessary to assess the significance of this observation.  相似文献   

5.
Management strategies that minimize P transfer from agricultural land to water bodies are based on relationships between P concentrations in soil and runoff. This study evaluated such relationships for surface runoff generated by simulated sprinkler irrigation onto calcareous arable soils of the semiarid western United States. Irrigation was applied at 70 mm h(-1) to plots on four soils containing a wide range of extractable P concentrations. Two irrigation events were conducted on each plot, first onto dry soil and then after 24 h onto wet soil. Particulate P (>0.45 microm) was the dominant fraction in surface runoff from all soils and was strongly correlated with suspended sediment concentration. For individual soil types, filterable reactive P (<0.45 microm) concentrations were strongly correlated with all soil-test P methods, including environmental tests involving extraction with water (1:10 and 1:200 soil to solution ratio), 0.01 M CaCl(2), and iron strips. However, only the Olsen-P agronomic soil-test procedure gave models that were not significantly different among soils. Soil chemical differences, including lower CaCO(3) and water-extractable Ca, higher water-extractable Fe, and higher pH, appeared to account for differences in filterable reactive P concentrations in runoff from soils with similar extractable P concentrations. It may therefore be possible to use a single agronomic test to predict filterable reactive P concentrations in surface runoff from calcareous soils, but inherent dangers exist in assuming a consistent response, even for one soil within a single field.  相似文献   

6.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

7.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   

8.
Vertical distribution of phosphorus in agricultural drainage ditch soils   总被引:3,自引:0,他引:3  
Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.  相似文献   

9.
Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241-289 g clay kg(-1) and pH 6.0-8.0) was incubated with five NH4H2PO4 rates (0-600 mg P kg(-1)) for 30 d. Total soil P (TPS) and soil-test P (STP) measured with Bray-P1 (BP), Mehlich-3 (M3P), Olsen (OP), Fe-oxide-impregnated paper (FeP), and water (WP) tests were 370 to 1360, 3 to 530, 10 to 675, 4 to 640, 7 to 507, and 2 to 568 mg P kg(-1), respectively. Degree of soil P saturation (DPS) was estimated by indices based on P sorption index (PSI) and STP (DPSSTP) and P, Fe, and Al extracted by ammonium oxalate (DPSox) or Mehlich-3 (DPSM3). Soil was packed to 1.1 g cm(-3) bulk density in triplicate boxes set at 4% slope. Surface runoff was collected during 75 min of 6.5 cm h(-1) rain. Runoff bioavailable P (BAP) and dissolved reactive P (DRP) increased linearly with increased P rate, STP, DPSox, and DPSM3 but curvilinearly with DPSSTP. Correlations between DRP or BAP and soil tests or saturation indices across soils were greatest (r > or = 0.95) for FeP, OP, and WP and poorest for BP and TPS (r = 0.83-0.88). Excluding the calcareous soil (Calciaquoll) significantly improved correlations only for BP. Differences in relationships between runoff P and the soil tests were small or nonexistent among the noncalcareous soils. Routine soil P tests can estimate relationships between runoff P concentration and P application or soil P, although estimates would be improved by separate calibrations for calcareous and noncalcareous soils.  相似文献   

10.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   

11.
The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is being considered for use as a munition, but its environmental fate and impact are unknown. The present study consisted of two main elements. First, sorption-desorption data were measured with soils and minerals to evaluate the respective contributions of organic matter and minerals to CL-20 immobilization. Second, since CL-20 hydrolyzes at a pH of >7, the effect of sorption on CL-20 degradation was examined in alkaline soils. Sorption-desorption isotherms measured using five slightly acidic soils (5.1 < pH < 6.9) containing various amounts of total organic carbon (TOC) revealed a nonlinear sorption that increased with TOC [K(d) (0.33% TOC) = 2.4 L kg(-1); K(d) (20% TOC) = 311 L kg(-1)]. Sorption to minerals (Fe(2)O(3), silica, kaolinite, montmorillonite, illite) was very low (0 < K(d) < 0.6 L kg(-1)), suggesting that mineral phases do not contribute significantly to CL-20 sorption. Degradation of CL-20 in sterile soils having different pH values increased as follows: sandy agricultural topsoil from Varennes, QC, Canada (VT) (pH = 5.6; K(d) = 15 L kg(-1); 8% loss) < clay soil from St. Sulpice, QC, Canada (CSS) (pH = 8.1; K(d) = 1 L kg(-1); 82% loss) < sandy soil provided by Agriculture Canada (SAC) (pH = 8.1, K(d) = approximately 0 L kg(-1); 100% loss). The faster degradation in SAC soil compared with CSS soil was attributed to the absence of sorption in the former. In summary, CL-20 is highly immobilized by soils rich in organic matter. Although sorption retards abiotic degradation, CL-20 still decomposes in soils where pH is >7.5, suggesting that it will not persist in even slightly alkaline soils.  相似文献   

12.
Two environmental aspects associated with land application of poultry litter that have not been comprehensively evaluated are (i) the competition of dissolved organic matter (DOM) and P for soil sorption sites, and (ii) the sorption of dissolved organic nitrogen (DON) relative to inorganic nitrogen species (e.g., NO(3)(-) and NH(4)(+)) and dissolved organic carbon (DOC). The competition between DOM and P for sorption sites has often been assumed to increase the amount of P available for plant growth; however, elevating DOM concentrations may also increase P available for transport to water resources. Batch sorption experiments were conducted to (i) evaluate soil properties governing P sorption to benchmark soils of Southwestern Missouri, (ii) elucidate the impact of poultry litter-derived DOM on P sorption, and (iii) investigate DON retention relative to inorganic N species and DOC. Soils were reacted for 24 h with inorganic P (0-60 mg L(-1)) in the presence and absence of DOM (145 mg C L(-1)) using a background electrolyte solution comparable to DOM extracts (I = 10.8 mmol L(-1); pH 7.7). Soil P sorption was positively correlated with metal oxide (r(2) = 0.70) and clay content (r(2) = 0.79) and negatively correlated with Bray-1 extractable P (r(2) = 0.79). Poultry litter-derived DOM had no significant negative impact on P sorption. Dissolved organic nitrogen was preferentially removed from solution relative to (NO(3)(-)-N + NO(2)(-)-N), NH(4)(+)-N, and DOC. This research indicates that poultry litter-derived DOM is not likely to enhance inorganic P transport which contradicts the assumption that DOM released from organic wastes increases plant-available P when organic amendments and fertilizer P are co-applied. Additionally, this work demonstrates the need to further evaluate the fate and transport of DON in agroecosystem soils receiving poultry litter applications.  相似文献   

13.
Understanding P sorption from animal manures is essential to formulate best management practices with regard to land application of manure from the standpoint of crop production and environmental quality. Little research has focused on the construction of P sorption isotherms where the P source is manure. The objectives of this study were to: (i) develop a procedure to characterize how inorganic P (P(i)) and total P (P(t)) from dairy slurry and swine slurry sorbs to soil; and (ii) compare the sorption characteristics of P(i) and P(t) where the P source was dairy slurry, swine slurry, or potassium phosphate (KH2PO4). Sorption solutions were prepared in 0.1 M KCl at pH 6 and equilibrated with soils at a 1:25 (w/v) soil/solution ratio for 24 h. Inorganic P, P(t), Al, and Fe in the equilibrated solutions were measured. For all soils, P(i) and P(t) sorption capacity of dairy slurry was greater than KH2PO4. Total P sorption capacity of swine slurry was greater than KH2PO4, while P(i) sorption capacity was less than KH2PO4. Overall, P(i) and P(t) sorption strengths of the manure slurries were less than or equal to KH2PO4. Increased P(i) sorption from dairy slurry was correlated with Fe and Al desorption. Reduction of P(i) sorption capacity from swine slurry was related to preferential sorption of organic P. Additional studies need to be conducted to determine how differences in P sorption between manures and fertilizer impact in-field P availability to a crop and potential for losses in runoff water.  相似文献   

14.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

15.
Dairy manure application to soils can result in phosphorus (P)-related degradation of water quality. The P in these manure-impacted soils can be labile even years after abandonment and under conditions normally associated with high P stability. Failure of P to stabilize with time compounds the environmental consequences of dairy manure disposal, especially on sandy soils. The objectives of this study were to compare chemical characteristics of active and abandoned dairy manure-impacted soils and minimally impacted soils and to assess the continuous release of P in relation to sparingly soluble salts using repeated water extractions, X-ray diffraction, and speciation modeling of column leachates. Soil samples from Ap horizons were collected from nine highly manure-impacted (total P > 1000 mg P kg(-1) soil) areas on four active and five abandoned dairies and four minimally impacted soils (total P < 200 mg P kg(-1) soil). Soil extracts were analyzed for electrical conductivity (EC), soluble reactive phosphorus (SRP), Ca, Mg, Na, and K. The EC of the soil solutions decreased as active dairy > abandoned dairy > minimally impacted soils. Release of Mg and SRP were significantly correlated (r2 = 0.68) and did not decline after abandonment; Ca release was not correlated with SRP (r2 = 0.01), and declined significantly (p < 0.05) after abandonment. Speciation data from column leachates suggested that Mg-P phases and/or the most soluble Ca-P phases could control P solution activities. An implication of this study is that P stabilization via crystallization of calcium phosphates (even at near-neutral pH) may be preempted by Mg-P association. Thus, mechanisms to minimize P release may require P-retaining soil amendments or management of animal rations to eliminate Mg-P formation.  相似文献   

16.
The P concentration in Norton Creek which drains cultivated Histosols in Quebec showed median concentration exceeding up to 14 times the environmental guideline of 0.03 mg total P L(-1). The aim of this study was to develop environmental and agronomic thresholds using soil tests to provide a tool for P management in Histosols. Soil samples were collected from Histosols across Quebec (82) and in fertilizer trials (66) to calibrate soil test methods against the degree of P saturation (DPS(OX)) using the acid-oxalate method and setting alpha(m) = 0.4, and the water-extractable P (P(W)) (Sissingh, 1971). The field trials on crop response to added P were conducted with carrots (8), potatoes (11), onions (10), Chinese cabbage (7), celery (10), and lettuce (20). Relative yields were computed as yield in control without P divided by highest yield with added P. The Mehlich III (M-III) P extraction was more closely related (r(2) = 0.73) to DPS(OX) than the Bray 1 method (r(2) = 0.62) and the Florida extraction method (r(2) = 0.53). The [P/(Al+gammaFe)](M-III) ratio as index of P saturation (IPS(M-III)) was the most closely related to DPS(OX) (r(2) = 0.88) setting gamma = 5. The critical [P/(Al+5Fe)](M-III) ratio of 0.05 at DPS(OX) = 0.25 and P(W) = 9.7 mg P L(-1) was validated by an independent study from North Carolina. The soil group (low- vs. high-IPS(M-III) soils) significantly influenced crop response to added P. Critical agronomic IPS(M-III) values were found between 0.10 and 0.15. Those environmental and agronomic benchmarks are instrumental for managing the P in vegetable-grown Histosols.  相似文献   

17.
Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p < 0.001) across a range of agricultural soils, and a strong positive relationship (r2 = 0.86, p < 0.001) was found between "colloidal P" (H2O-CaCl2 extracts) and turbidity. Linear regression of the proportion of fine clay (<2 microm) for each soil type evaluated against the (H2O-CaCl2) colloidal P fraction gave a weak but positive relationship (r2 = 0.38, p = 0.082). The relative contribution of different particle-size fractions in transporting P in agricultural runoff from grassland soils was evaluated using a randomized plot experiment. A significant difference (p = 0.05) in both TP and reactive phosphorus (RP) in subsurface flow was recorded for different particle-size fractions, with most TP transferred either in association with the 2-microm fraction or with the 0.001-microm or smaller fractions. Total P concentrations in runoff were higher from plots receiving P amendments compared with the zero-P plots; however, these differences were only significant for the >0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.  相似文献   

18.
While numerous studies have evaluated the efficacy of outdoor rainfall simulations to predict P concentrations in surface runoff, few studies have linked indoor rainfall simulations to P concentrations in surface runoff from agricultural fields. The objective of this study was to evaluate the capacity of indoor rainfall simulation to predict total dissolved P concentrations [TP(<0.45)] in field runoff for four dominant agricultural soils in South Dakota. Surface runoff from 10 residue-free field plots (2 m wide by 2 m long, 2-3% slope) and packed soil boxes (1 m long by 20 cm wide by 7.5 cm high, 2-3% slope) was compared. Surface runoff was generated via rainfall simulation at an intensity of 65 mm h(-1) and was collected for 30 min. Packed boxes produced approximately 24% more runoff (range = 2.8-3.4 cm) than field plots (range = 2.3-2.7 cm) among all soils. No statistical differences in either TP(<0.45) concentration or TP(<0.45) loss was observed in runoff from packed boxes and field plots among soil series (0.17 < P < 0.83). Three of four soils showed significantly more total P lost from packed boxes than field plots. The TP(<0.45) concentration in surface runoff from field plots can be predicted from TP(<0.45) concentration in surface runoff from the packed boxes (0.68 < r(2) < 0.94). A single relationship was derived to predict field TP(<0.45) concentration in surface runoff using surface runoff TP(<0.45) concentration from packed boxes. Evidence is provided that indoor runoff can adequately predict TP(<0.45) concentration in field surface runoff for select soils.  相似文献   

19.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   

20.
Southern Alberta has the highest density of feedlot cattle in Canada, and there is a concern that leaching of water and contaminants may be greater for feedlots located on coarser-textured than finer-textured soils. Our objective was to determine if infiltration and leaching were greater for a 4-yr-old feedlot located on a moderately coarse-textured (MC) soil compared with two feedlots located on moderately fine-textured (MF) soils (5- and 52-yr-old pens). Various soil physical properties of feedlot pen surfaces were measured, including field-saturated hydraulic conductivity (K(fs)) and near-saturated hydraulic conductivity at -0.9 and -3.9 cm water potential. Selected chemical properties of feedlot soil layers were measured, as well as the chloride content of the soil profile (0-100 cm). Mean K(fs), K(-0.9), and K(-3.9) values were not significantly (P > 0.10) greater at the MC site than the two MF sites, indicating no evidence of greater infiltration on coarser-textured soils. In addition, mean K(fs), K(-0.9), and K(-3.9) values of soils within feedlot pens at all three sites were significantly (P < or = 0.10) reduced by 46 to 78% compared with soil outside the pens. Depth of chloride accumulation was greatest at the 52-yr-old feedlot on MF soil (60-70 cm), followed by 4-yr-old feedlot on MC soil (40-50 cm) and 5-yr-old feedlot on MF soil (30-40 cm). Visual inspection determined that the black interface layer formed within 2 mo of cattle stocking at all three sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号