首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
India is one of the most populous countries and is the third largest greenhouse gas–emitting nation. Energy security is a serious issue for India as it relies heavily on fossil fuel imports. Biodiesel production using microalgae as feedstock can address both of these issues. In this study, the technical feasibility of microalgae‐based biodiesel production is carried out for a coal thermal power plant (i.e., Budge Budge Thermal Station) in the state of West Bengal, India, using a generic methodology. An oleaginous microalgae species that is tolerant toward flue gas was identified (i.e., Nannochloropsis sp). A 75‐acre open raceway microalgae production plant was designed keeping the costs, energy demand, and CO2 emissions low. The open raceway pond can use 38 tons of CO2, produce 19 tons of algal biomass, and treat 9320 m3 of wastewater per acre annually.  相似文献   

2.
Generation of biodiesel from microalgae has been extensively investigated; however, its quality is often not suitable for use as fuel. Our investigation involved the evaluation of biodiesel quality using a native isolate Chlorella sorokiniana MIC-G5, as specified by American Society for Testing and Materials (ASTM), after transesterification of lipids with methanol, in the presence of sodium methoxide. Total quantity of lipids extracted from dry biomass, of approximately 410–450 mg g?1 was characterized using FTIR and 1H NMR. After transesterification, the total saturated and unsaturated fatty acid methyl esters (FAMEs) were 43% and 57%, respectively. The major FAMEs present in the biodiesel were methyl palmitate (C16:0), methyl oleate (C18:1), and methyl linoleate (C18:2), and the 1H NMR spectra matched with criteria prescribed for high-quality biodiesel. The biodiesel exhibited a density of 0.873 g cm–3, viscosity of 3.418 mm2 s?1, cetane number (CN) of 57.85, high heating value (HHV) of 40.25, iodine value of 71.823 g I2 100 g?1, degree of unsaturation (DU) of 58%, and a cold filter plugging point (CFPP) of –5.22°C. Critical fuel parameters, including oxidation stability, CN, HHV, iodine value, flash point, cloud point, pour point, density, and viscosity were in accordance with the methyl ester composition and structural configuration. Hence, C. sorokiniana can be a promising feedstock for biodiesel generation.  相似文献   

3.
The possibility of application of black liquor for oil-riched algae cultivation is inspected. The results show that after ligin removal and enzymatic hydrolysis, the hydrolysate of black liquor contained 9.18 g L?1 of reducing sugar. When the hydrolysate was used for Scenedesmus obliquus (S. obliquus) cultivation, a 1.23 g L?1, 24.52%, and 23.20 mg L?1d?1 was obtained for growth yield, oil content, and the lipid productivity, seperately. The hemicellulose was extracted from black liquor and hydrolyzed. With addition of 3 g L?1 yeast extract, the growth yield of S. obliquus in hemicellulose hydrolysate increased to 2.7 g L?1, an increase of 26.8% than that of in glucose medium, oil content was 25.7% and the final lipid productivity reached 53.37 mg L?1d?1. The results indicate that black liquor can not be directly used by microalgae, but with approprate treatment, the carbohydrate of it could be recovered and uitilized for the oil production from microalgae.  相似文献   

4.
A feasibility study on utilization of non edible oil of Scleropyrum pentandrum was carried out to see its potential as a new source for biodiesel production. Nonedible oil seeds of Scleropyrum pentandrum have oil content of 55–60%. Transesterification of freshly extracted oil in the presence of anhydrous sodium hydroxide at a concentration 1% (w/v oil) and methanol-oil ratio of 40% (v/v oil) yields 90.8% methyl esters under conventional heating. Month old oil requires sulfuric acid pretreatment (esterification) before transesterification. The transesterified oil has a density 889–893 kg/m3; kinematic viscosity of 4.21–5.7 mm2/s; cetane index 46.03; pour point of ?15°C and gross calorific value of 40.135 MJ/kg and oxidative stability of 2.35 hours. The properties are well within the Indian, European and American standard limits recommended for biodiesel except the oxidation stability, which can be improved by adding antioxidant additives. The engine performance studies of B10 and B20 blends of Scleropyrum pentandrum biodiesel (SP biodiesel) with statistical inference confirmed that it can be used as a fuel in CI engines without any engine modifications. The engine exhaust emission analysis showed that the emission of hydrocarbons can be minimized by at least 15–20%, CO emission by 15%, smoke opacity by 10–12% and moderately lesser CO2 and NOx emissions.  相似文献   

5.
Caesalpinea eriostachys seed oil, as a source of triglycerides with potential application for biodiesel production in Mexico is introduced. Its lipid profile obtained by Gas Chromatography-Mass Spectrometry (GC-MS) revealed saturated and unsaturated glycerol esters as the constituents. Therefore, heterogeneous and homogeneous catalyzed transesterification reactions were assayed employing ZnAl hydrotalcites and KOH, as the catalysts, respectively. The transesterification reactions yielded 59% for Zn/Al(2), 79% for Zn/Al(4), and 90% for KOH, depicting typical behavior, as in biodiesel production data from literature, where Zn-Al hydrotalcites or KOH were assayed. The caloric, density, viscosity values, and fatty acid methyl esters profile from reaction products were concordant to EN 14214, suggesting C. eriostachys as a promising feedstock for biodiesel production.  相似文献   

6.
In the present study, response surface methodology (RSM) involving central composite design (CCD) was applied to optimize the reaction parameters of biodiesel production from yellow mustard (Sinapis alba L.) seed oil during the single-step transesterification process. A total of 30 experiments were designed and performed to determine under the effects of variables on the biodiesel yield such as methanol to oil molar ratio (2:1–10:1), catalyst concentration (0.2–1.0 wt.% NaOH), reaction temperature (50–70°C), and reaction time (30–90 min). The second order polynomial model was used to predict the biodiesel yield and coefficient of determination (R2) was found to be at 0.9818. The optimum biodiesel yield was calculated as 96.695% from the model with the following reaction conditions: 7.41:1 of methanol to oil molar ratio, 0.63 wt. % NaOH of catalyst concentration, 61.84°C of reaction temperature, and 62.12 min of reaction time. It is seen that the regression model results were in agreement with the experimental data. The results showed that RSM is a suitable statistical technique for optimizing the reaction parameters in the transesterification process in order to maximize the biodiesel yield.  相似文献   

7.
In this study, a non-edible seed oil of Alexandrian Laurel (Calophyllum inophyllum L.) with higher free fatty acid content has been harnessed to produce biodiesel by transesterification process. The 20.2% free fatty acid (FFA) content was first reduced to 12.9% by using TOP degumming process. Ortho-phosphoric acid was used to esterify the refined kernel oil. Transesterification reaction was performed with NaOH as an alkaline catalyst and methanol as an analytical solvent. The effects of methanol to oil molar ratio (MR), catalyst concentration (CC), reaction temperature (TP), reaction time (TM), and stirrer speed (SS) on biodiesel conversion were studied to optimize the transesterification conditions using DOE- approach. The experimental study revealed that 9:1 MR, 0.8 wt.% CC, 60°C TP, 75 min TM and 1000 rpm SS were the optimal process control variables. The study indicated that CC was the most important control parameter in optimal methyl ester production. The optimal treatment combination yielded 97.14% of biodiesel. The profile of biodiesel was determined using gas chromatography-mass spectrometry. 1H NMR spectrum of Calophyllum inophyllum methyl ester (CIME) has been reported. The properties of the biodiesel have been found within specifications of the ASTM D6751 and EN 14214 standards and hence could be considered as a suitable alternative to diesel fuel for sustainable circulation of carbon.  相似文献   

8.
Microalgae have been identified as a superior feedstock for biodiesel production and varied tubular photobioreactors are developed for high efficient and scale-up microalgae cultivation. This article presented a novel concentric double tubes using aeration through radial pores along the length direction of inner tube. Experiments on microalgae cultivation were carried out in the novel photobioreactor, and two control groups including concentric double tubes with axial aeration at both ends and common tubular. The biomass productivity of novel photobioreactor increased by 43.6% and 107.4%, respectively, compared with concentric double tubes with axial aeration at both ends and common tubular without aeration. The values of pH shifted from 7.5 to 9.0 for novel photobioreactor, but 7.5 to 8.8 for common tubular, and 7.5 to 9.6 for concentric double tubes with axial aeration. The dissolved oxygen concentration fluctuated between 6.0 and 7.0 mg·L?1 for novel photobioreactor, but rose from 6.6 to 10.2 mg·L?1 for the common tubular, and 6.9 to 8.1 mg·L?1 for the concentric with axial aeration. Results show that the aeration style of novel photobioreactor can make efficient local mixing and maintain smaller range of pH and lower level of dissolved oxygen in case of higher biomass concentration. Moreover, compared with the two control groups, the novel concentric double tubes have advantages on the light/dark cycle frequency, which may be benefit for microalgae cultivation. The novel concentric double tubes presented in this work can give some inspiration for high efficiency microalgae cultivation.  相似文献   

9.
In this research study, biodiesel has been successfully produced from vegetable seed oil of an indigenous plant Salvadora persica L. that meets the international biodiesel standard (ASTM D6751). The biodiesel yield was 1.57 g/5 g (31.4% by weight) and the in-situ transesterification ester content conversion was 97.7%. The produced biodiesel density was 0.894 g/mL, its kinematic viscosity 5.51 mm2/s, HHV 35.26 MJ/kg, flash point 210°C, cetane no. 61, and sulfur content 0.0844%. Thermal analysis of the biodiesel showed that 97% weight loss was achieved at 595°C with total oxidation of the biodiesel. The production energy efficiency was 0.46% with a lab scale setup, assuming the volume fraction ratio (volume of the sample/total volume of the equipment used). The results revealed that single-step in-situ transesterification method is suitable for the production of biodiesel from S. persica seed oil.  相似文献   

10.
The present experimental work investigates the use of ethyne gas in biodiesel-fueled diesel engine at different flow rate of 1, 2, and 3 L/min and is compared with diesel operation. This work is aimed to examine the outcome of ethyne gas by dual-fuel operation on emission characteristics of neat biodiesel-fueled stationary diesel engine. The oil derived from mustard seeds are employed as a source for biodiesel. The work was carried out at 2100 rpm (speed) and at an optimal compression ratio of 17. Based on the outcome of this investigation, the maximum reduction in hydrocarbon (25.1%), carbon monoxide (17.24%), and smoke emission (24.8%) was observed for biodiesel–ethyne at 3 L/min than the neat biodiesel. However, NOx emissions were found to be 15.8% higher for ethyne–biodiesel fueling at 3 L/min owing to increase in combustion gas temperature than neat biodiesel.  相似文献   

11.
ABSTRACT

The quality of microalgal biofuel depends on the fatty acid (FA) distribution. A high ratio of saturated fatty acids (SFAs) favors better biofuel characteristics. Palmitic acid (C16:0) and stearic acid (C18:0) are essential FAs for required biodiesel quality. In this study, combined effects of growth medium concentrations of NaCl, glucose and glycerol on cell composition and FA profile of the Chlorella vulgaris SAG 211–12 were investigated. A central composite design (CCD) based design of experiments (DoE) was used for experimental setup. According to experimental results, the maximum mass fraction for palmitic acid (C16:0), 40.67% of total fatty acids, was obtained in the medium supplemented with 0.9% (w/v) NaCl, 0.3% (w/v) glucose, and 0.3% (w/v) glycerol, whereas stearic acid (C18:0) percentage reached the highest value of 22.16% of total fatty acids in the presence of 2.5% NaCl, 0.6% glucose, and 0.6% glycerol. According to the same set of designed experiments, best starch content was found as 22.08% of dry cell weight in a medium containing 2.0% NaCl, 0.3% glucose, and 0.3% glycerol. C16:0 mass fraction as a function of three medium ingredient concentrations was modeled using a Kriging model. Optimum concentrations of NaCl, glucose and glycerol to reach maximum C16:0 fraction were predicted as 0.5, 1, and 1%, respectively.  相似文献   

12.
Waste from wastewater treatment plants (WWTP) for Helianthus annuus L. production may be a viable solution to obtain biodiesel. This study achieved two objectives: assess the agronomical viability of waste (wastewater and sludge) from the Alcázar de San Juan WWTP in central Spain for H. annuus L. production; use H. annuus L. seeds grown in this way to obtain biodiesel. Five study plots, each measuring 6 m × 6 m (36 m2), were set up on the agricultural land near the Alcázar de San Juan WWTP. Five fertilizer treatment types were considered: drinking water, as the control; treated wastewater; 10 t ha?1 of air-dried sewage sludge; 20 t ha?1 of air-dried sewage sludge; 0.6 t ha?1 of commercial inorganic fertilizer. Soil, irrigation water, sewage sludge, crop development and fatty acid composition in achenes oil were monitored. The 20 t ha–1 dose of sewage sludge proved effective to grow H. annuus L. with similar results to those grown with a commercial fertilizer. However, precautions should be taken when irrigating with wastewater because of high salinity and nutrient deficiency. Sunflower oil was composed mostly of linoleic and oleic acid. The remaining fatty acids were linolenic, estearic, nervonic, palmitoleic, and palmitic.  相似文献   

13.
Biodiesel is now-a-days recognized as a real potential alternative to petroleum-derived diesel fuel due to its number of desirable characteristics. However, its higher production cost resulting mainly due to use of costly food-grade vegetable oils as raw materials is the major barrier to its economic viability. Present work is an attempt to explore the potential of Eriobotrya japonica seed oil for the synthesis of biodiesel using alkali-catalyzed transesterification. Optimization of production parameters, namely molar ratio of alcohol to oil, amount of catalyst, reaction time and temperature, was carried out using Taguchi method. Fatty acid composition of both oil and biodiesel was determined using GC and H1 NMR. Alcohol to oil molar ratio of 6:1, catalyst amount of 1% wt/wt, 2 h reaction time and 50 °C reaction temperature were found to be the optimum conditions for obtaining 94.52% biodiesel. Highest % contribution was shown by the ‘amount of catalyst’ (67.32%) followed by molar ratio of alcohol to oil (25.51%). Major fuel properties of E. japonica methyl esters produced under optimum conditions were found within the specified limits of ASTM D6751 for biodiesel, hence it may be considered a prospective substitute of petro-diesel.  相似文献   

14.
Kitchen wastes containing high amounts of carbohydrates have potential as low-cost substrates for fermentable sugar production. In this study, enzymatic saccharification of kitchen waste was carried out. Response surface methodology (RSM) was applied to optimize the enzymatic saccharification conditions of kitchen waste. This paper presents analysis of RSM in a predictive model of the combined effects of independent variables (pH, temperature, glucoamylase activity, kitchen waste loading, and hydrolysis time) as the most significant parameters for fermentable sugar production and degree of saccharification. A 100 mL of kitchen waste was hydrolyzed in 250 mL of shake flasks. Quadratic RSM predicted maximum fermentable sugar production of 62.79 g/L and degree of saccharification (59.90%) at the following optimal conditions: pH 5, temperature 60°C, glucoamylase activity of 85 U/mL, and utilized 60 g/L of kitchen waste as a substrate at 10 h hydrolysis time. The verification experiments successfully produced 62.71 ± 0.7 g/L of fermentable sugar with 54.93 ± 0.4% degree of saccharification within 10 h of incubation, indicating that the developed model was successfully used to predict fermentable sugar production at more than 90% accuracy. The sugars produced after hydrolysis of kitchen waste were mainly attributed to monosaccharide: glucose (80%) and fructose (20%). The fermentable sugars obtained were subsequently used as carbon source for bioethanol production by locally isolated yeasts: Saccharomyces cerevisiae, Candida parasilosis, and Lanchancea fermentati. The yeasts were successfully consumed as sugars hydrolysate, and produced the highest ethanol yield ranging from 0.45 to 0.5 g/g and productivity between 0.44 g L–1 h–1 and 0.47 g L–1 h–1 after 24-h incubation, which was equivalent to 82.06–98.19% of conversion based on theoretical yield.  相似文献   

15.
Singapore has pledged to attain 7–11% Business-As-Usual carbon emissions reduction by 2020. About 19% of CO2 contribution stemmed from road transport in 2005. Commercial vehicles, which uses mainly diesel, consumed 695 million litres diesel in 2012. An estimated 115,585 tonnes or 127 million litres cooking oils (derived from seeds/fruits) were consumed in 2010, in which the bulk of used cooking oil is re-incorporated into the food preparation process while only a small amount is being recycled into biodiesel or disposed into the sewerage. Nevertheless, the present research reveals that biodiesel derived from spent cooking oil has potential to be a viable fuel supplement. Surveys were carried out involving three market segments – suppliers, processors and end-users – to identify the barriers and obstacles in mass production of biodiesel. A key enabler of biodiesel as a fuel supplement towards a greener environment lies in government mandate/policies in promoting greater biodiesel usage.  相似文献   

16.
The production of biodiesel using oleaginous microorganisms is investigated as promising alternative to produce a truly sustainable and renewable transportation fuel. While the feasibility of this approach has been shown on the laboratory scale, a commercial scale implementation is to date inhibited due to economic restraints. In order to evaluate the current cost situation and to develop suggestions to reduce production related costs, a simple cost analysis of the proposed microbial oil production process has been carried out. For closed fermentation in large-scale fermenters a break-even price of 2,350 US$ t–1 for microbial oil was calculated. In the context of a sensitivity analysis it was shown that especially alterations in capital cost can lead to overall cost reductions. Accordingly, an open pond cultivation approach was designed, cutting the cost for equipment almost in half and decreasing the break-even price to 1,723 US$ t–1. However, these reductions are only feasible when stable biomass and lipid yields can be ensured in open-pond systems, because the sensitivity analysis identified these yield parameters as leading factors influencing the break-even price. Even under very optimistic assumptions, it was not possible to reduce the break-even price below that of conventional plant oils as competitive products. Therefore, economic feasibility of the process will probably only occur if on one hand considerable technical development and efficiency improvements of the production process are made while on the other hand plant and crude oil prices are continuously increasing.  相似文献   

17.
As a potential hydrocarbon production method, the hydrocracking of soybean biodiesel, using a commercial petroleum hydrocracking catalyst, was studied. Experiments were carried out in a 1,000 mL, high-pressure autoclave for 2–4 hr over the temperature range of 200–280°C under an initial hydrogen pressure of 10 MPa. Hydrocracking of soybean biodiesel produced n-paraffins in the C8–C17 boiling range, which includes both green gasoline and diesel. Both pressure and temperature play important roles in the transformation of soybean biodiesel. Hydrocarbons can be formed above 220°C with a liquid yield of 81.76%. The n-alkanes content of the liquid product reached 32.29% at 280°C, with 88.32% C11–C14 selectivity. In addition, hydrocracking results in many changes of catalyst such as physical properties, morphology, etc. For the used catalyst, the concentrations of Ni and C increased, and the pore channels were significantly reduced.  相似文献   

18.
Biodiesel has emerged as one of the most promising renewable energy to substitute existing petroleum-derived diesel fuel being used in transportation sectors. Among the various feedstocks reported for biodiesel production, Moringa oleifera oil is becoming a promising replacement for conventional diesel fuel. Therefore, this work provides a comprehensive overview of the recent progress in biodiesel production from Moringa oleifera oil. The physicochemical properties, fatty acid composition of oil and methyl esters, oil extraction methods, esterification, and transesterification process, and purification methods employed in the biodiesel production have been discussed.  相似文献   

19.
In this study, palm oil mill effluent (POME) was used as an alternative medium for algal biomass and lipid production. The influence of different concentrations of filtered and centrifuged POME in sea water (1, 5, 10 and 15%) on microalgal cell growth and lipid yield were investigated. Both Nannochloropsis oculata and Tetraselmis suecica had enhanced cell growth and lipid accumulation at 10% POME with maximum specific growth rate (0.21 d–1 and 0.20 d–1) and lipid content (39.1 ± 0.73% and 27.0 ± 0.61%), respectively, after 16 days of flask cultivation. The total Saturated Fatty Acid (SFA) (59.24%, 68.74%); Monounsaturated Fatty Acid (MUFA) (15.14%, 12.26%); and Polyunsaturated Fatty Acid (PUFA) (9.07%, 8.88%) were obtained for N. oculata and T. suecica, respectively, at 10% POME. Algal cultivation with POME media also enhanced the removal of Chemical Oxygen Demand (COD) (93.6–95%), Biological Oxygen Demand (BOD) (96–97%), Total Organic Compound (TOC) (71–75%), Total Nitrogen (TN) (78.8–90.8%) and oil and grease (92–94.9%) from POME.  相似文献   

20.
In the present study crude Garcinia gummi-gutta seed oil was evaluated as a potential feedstock for biodiesel production. Due to the high acid value (29.73 mg KOH/g) the oil was converted to biodiesel by using acid catalyzed esterification process. Further, biodiesel properties of the sample were evaluated, which fulfilled the biodiesel specifications laid by ASTM D6751, EN 14214 and IS 15607. The biodiesel possessed excellent cetane number (66.09) and a high flash point (158°C). In addition, the calorific value (41.03 MJ/kg) was very close to diesel fuel. The results suggest that the G. gummi-gutta can be an alternative source for diesel and can be used as a potential feedstock for biodiesel in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号