首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One by‐product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small‐scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty‐nine compounds were detected at concentrations ranging from <1 to >1,000 ng [g sediment]?1 dry weight basis. Concentrations and frequencies of detection were higher in tributaries and small urban creeks than in the Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.  相似文献   

2.
Abstract: Recent national concerns regarding the environmental occurrence of emerging contaminants (ECs) have catalyzed a series of recent studies. Many ECs are released into the environment through discharges from wastewater treatment plants (WWTPs) and other sources. In 2005, the U.S. Geological Survey and the City of Longmont initiated an investigation of selected ECs in a 13.8‐km reach of St. Vrain Creek, Colorado. Seven sites were sampled for ECs following a Lagrangian design; sites were located upstream, downstream, and in the outfall of the Longmont WWTP, and at the mouths of two tributaries, Left Hand Creek and Boulder Creek (which is influenced by multiple WWTP outfalls). Samples for 61 ECs in 16 chemical use categories were analyzed and 36 were detected in one or more samples. Of these, 16 have known or suspected endocrine‐disrupting potential. At and downstream from the WWTP outfall, detergent metabolites, fire retardants, and steroids were detected at the highest concentrations, which commonly exceeded 1 μg/l in 2005 and 2 μg/l in 2006. Most individual ECs were measured at concentrations less than 2 μg/l. The results indicate that outfalls from WWTPs are the largest but may not be the sole source of ECs in St. Vrain Creek. In 2005, high discharge was associated with fewer EC detections, lower total EC concentrations, and smaller EC loads in St. Vrain Creek and its tributaries as compared with 2006. EC behavior differed by individual compound, and some differences between sites could be attributed to analytical variability or to other factors such as physical or chemical characteristics or distance from contributing sources. Loads of some ECs, such as diethoxynonylphenol, accumulated or attenuated depending on location, discharge, and distance downstream from the WWTP, whereas others, such as bisphenol A, were largely conservative. The extent to which ECs in St. Vrain Creek affect native fish species and macroinvertebrate communities is unknown, but recent studies have shown that fish respond to very low concentrations of ECs, and further study on the fate and transport of these contaminants in the aquatic environment is warranted.  相似文献   

3.
Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4‐tert‐octylphenol and 4‐nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000‐140,000 ng/l), followed by 4‐nonlylphenol and 4‐nonylphenolethoxylates (50‐880 ng/l), 4‐tert‐octylphenol and 4‐tert‐octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1‐54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.  相似文献   

4.
环境内分泌干扰物(EDCs)是一类广泛存在于环境中,能干扰正常内分泌功能的天然或人工合成的化合物,严重地威胁着生态环境及人类健康。简要介绍了环境内分泌干扰物的危害性及污染现状,分析探讨了对环境内分泌干扰物的控制、削减对策,并就如何加强生态风险管理谈了看法。  相似文献   

5.
Abstract: Wastewater impact on drinking water sources was assessed using several approaches, including analysis of three pharmaceuticals and personal care products (PPCPs) – primidone, carbamazepine, and caffeine – as indicators, and determination of precursor concentrations for the disinfection byproduct N‐nitrosodimethylamine (NDMA) using formation potential (FP) tests. Samples were collected in 2006 and 2007 in rivers impacted by wastewater treatment plant (WWTP) discharges, at drinking water treatment plant (DWTP) intakes upstream or downstream from these discharges, and from two WWTP effluents in two watersheds. The levels [10th percentile ? maximum (median)] of primidone, carbamazepine, caffeine, and NDMAFP were 2‐95 (7) ng/l, 2‐207 (18) ng/l, 7‐687 (78) ng/l, and 12‐321 (35) ng/l, respectively. The highest concentrations of primidone, carbamazepine, and NDMA precursors were from one of the WWTP effluents, whereas the highest concentration of caffeine was detected in a river heavily impacted by treated wastewater discharges. The lowest concentrations of the three PPCPs were from a DWTP influent upstream of a metropolitan urban area with minimum wastewater impact. Temporal variations in PPCP and NDMAFP concentrations and streamflows in two selected watersheds were also observed. Furthermore, correlation analysis between caffeine or carbamazepine and primidone was evaluated. The results show that measurement of the two pharmaceuticals and NDMAFP tests can be used to evaluate wastewater impact in different watersheds, whereas caffeine results were more variable.  相似文献   

6.
Abstract: Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river’s ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less‐modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake.  相似文献   

7.
Although the implementation of wastewater treatment plants (WWTP) has dramatically increased the quality of surface waters in urbanized areas, WWTPs can still discharge noticeable amounts of solutes and particles to recipient streams. Although the fate of WWTP nutrients has received considerable attention, transport and in-stream transformation of sewage-derived particulate organic matter (SDPOM) have not. To investigate the transport and transformation of SDPOM in recipient streams, we experimentally injected fluorescently labeled SDPOM into a headwater stream and tracked its downstream fate at baseflow. Most SDPOM disappeared from the streamwater within a 160-m long reach with an average deposition velocity of 0.14 mm s(-1). We further coupled hydrometric measurements of specific water fluxes through the streambed interface with a mixing model to estimate streambed oxygen removal, and found significantly higher oxygen removal in the deposition (0.75 g O2 m(-2) d(-1)) than in the downstream post-deposition (0.36 g O2 m(-2) d(-1)) subreach. Contrary to our expectations, we did not detect any apparent effect of SDPOM deposition on streambed clogging. Our results show the capacity of a recipient stream to retain SDPOM and to reduce its downstream export, and thus contribute to a better understanding of ecosystem services of human-altered streams.  相似文献   

8.
Abstract: Recent studies have detected estrogenic compounds in surface waters in North America and Europe. Furthermore, the presence of estrogenic compounds in surface waters has been attributed, in some cases, to the discharge of wastewater treatment plant (WWTP) effluent. The primary objective of the current study was to determine if WWTP effluent contributes estrogens to the surface waters of Nebraska. A second objective of this study was to determine if estrogens were found in concentrations sufficient enough to manifest feminizing effects on fish. These objectives were satisfied by deploying polar organic chemical integrative samplers (POCIS) and caged fathead minnows at eight field sites. Deployment sites included: three reference sites (Pawnee Creek, the Little Blue River, and the Middle Loup River), two sites upstream of the WWTPs at Grand Island and Columbus, and three sites downstream of the WWTPs at Grand Island, Columbus, and Hastings. Following the seven day deployments, POCIS extracts were analyzed for estrone, 17β‐estradiol, estriol and 17α‐ethinylestradiol using liquid chromatography tandem mass spectrometry (LC/MS/MS). 17β‐estradiol was detected in POCIS from six of the eight field sites with the greatest quantities recovered in POCIS deployed downstream from the Grand Island and Hastings WWTPs. Estrone was detected only in the POCIS deployed downstream from the Grand Island and Hastings WWTPs. Estrogenic effects were detected in caged minnows analyzed for the hepatic mRNA expression of two estrogen‐responsive genes, vitellogenin (vg1) and estrogen receptor α (ERα). Fish deployed at the site where the greatest quantities of estrogens were recovered (Hastings) had significantly higher expression of both vg1 and ERα than fish deployed at any of the other sites. These results confirm that WWTP effluent contributes biologically significant levels of estrogens to Nebraska surface waters.  相似文献   

9.
Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN).  相似文献   

10.
Abstract: The objective of this study is to evaluate the effect of estrogens on fish endocrine disruption in river water and treated wastewater. Endogenous estrogen estrone (E1), 17β‐estradiol (E2), river water, and treated wastewater were used for exposure tests on male Japanese medaka. Vitellogenin induction in male medaka was regarded as the endpoint of endocrine disruption. The effective concentrations of E1 and E2 on vitellogenin induction in medaka were evaluated by breeding medaka for 14 days in tanks with various concentrations of E1 or E2. Vitellogenin induction increased with elapse of time during exposure, with higher estrogen concentrations causing greater vitellogenin induction. According to the test results, the lowest observed effect concentrations (LOECs) of E1 and E2 were estimated to be 31.6 and 5.0 ng/l, respectively; and the E2 equivalent (EEQ) LOEC value of E1 was 5.2 ng‐E2/l, derived by multiplying the relative potency of E1 by that of E2 as estimated in this study. In continuous exposure tests using river water or treated wastewater, the estrogenic activity, an index of total estrogenic potential measured by yeast screen assay and expressed as EEQ, varied widely during the exposure tests, and significant vitellogenin induction was observed after several days of high levels of estrogenic activity in water. Vitellogenin concentration tended to significantly increase if EEQ exceeded the level of 5 ng‐E2/l. The threshold value was substantially the same as the results for E1 and E2 exposure tests of medaka. Consequently, EEQ over 5 ng‐E2/l was revealed to have the potential to cause endocrine disruption of male medaka. As estrogenic activity exceeding 5 ng‐E2/l was observed in some rivers in Japan, total estrogenic potential needs to be further decreased at wastewater treatment plants to prevent fish endocrine disruption.  相似文献   

11.
Biodegradation of [A‐ring 14C] Estrone (E1), 17β‐estradiol (E2), and 17α‐ethinylestradiol (EE2) to 14CO2 was investigated under light and dark conditions in microcosms containing epilithon or sediment collected from Boulder Creek, Colorado. Mineralization of the estrogen A‐ring was observed in all sediment treatments, but not epilithon treatments. No difference in net mineralization between light and dark treatments was observed for 14C‐E2. Net mineralization of 14C‐E1 and 14C‐EE2 was enhanced in light treatments. Extents of 14CO2 accumulation and rates of mineralization were significantly greater for E2 than E1 under dark conditions, but were comparable under light conditions. These results indicate substantial differences in the uptake and metabolism of E1 and E2 in the environment and suggest biorecalcitrance of E1 relative to E2 in light‐limited environments. The extent of 14CO2 accumulation and rate of mineralization for EE2 in dark treatments were less than half of that observed for E2 and generally lower than for E1, consistent with previous reports of EE2 biorecalcitrance. However, 14CO2 accumulation and rates of mineralization were comparable for EE2, E2, and E1 under light conditions. These results indicate photoactivation and/or phototransformation/photodegradation processes can substantially enhance heterotrophic biodegradation of estrogens in sunlit environments and may play an important role in estrogen transport and attenuation.  相似文献   

12.
The occurrence of broad-host-range (BHR) plasmid amplicons belonging to incompatibility (Inc) groups IncA/C, IncN, IncP, and IncW in two wastewater treatment plant (WWTP) effluents and effluent-receiving streams in Northwest Arkansas, Mud Creek and Spring Creek, was determined. Community DNA captured on filter membranes and plasmid DNA extracted from antibiotic-resistant Escherichia coli isolated from Mud Creek was used for polymerase chain reaction at amplification of partial gene sequences specific to BHR plasmids. IncP plasmid amplicons were detected in effluent and downstream sites in both streams, while IncN and IncW plasmid amplicons were detected in Spring Creek in effluent and downstream but not upstream. IncA/C plasmid amplicons, in contrast, were detected at all sites, including upstream in most samples in Spring Creek and in one sample from Mud Creek. One IncP and two IncN were the only BHR plasmid amplicons found in 85 screened antibiotic-resistant E. coli isolates, and were detected only in isolates from effluent and downstream samples. Broad-host-range plasmids frequently carry antibiotic-resistance genes and can facilitate horizontal transfer of those genes. While BHR plasmids have been detected in WWTPs, WWTPs do not target these genetic elements for destruction. This study indicates that BHR plasmids are in WWTP effluent and are introducing BHR plasmids into streams. Additionally, species other than E. coli may be better targets as indicator bacteria for future studies of the impact of treated effluent on environmental dissemination of BHR plasmids.  相似文献   

13.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

14.
张晗  董秉直 《四川环境》2011,30(3):104-108
如何有效去除水中内分泌干扰物、医药活性化合物等有机微污染物的研究逐渐增加,其中,纳滤膜由于其较高的去除率得到了广泛关注。但由于纳滤膜去除这些物质的分离机理较为复杂,有时并不明确,给实验带来较大困难。文章总结了纳滤膜去除水中内分泌干扰物/医药活性化合物的典型应用及其三种分离机理——筛分作用、电荷作用、吸附作用,并对去除过程中所产生的问题和解决方案加以总结。为今后纳滤膜去除内分泌干扰物/医药活性化合物的研究提供参考依据。  相似文献   

15.
Sejkora, Patrick, Mary Jo Kirisits, and Michael Barrett, 2011. Colonies of Cliff Swallows on Highway Bridges: A Source of Escherichia coli in Surface Waters. Journal of the American Water Resources Association (JAWRA) 47(6):1275–1284. DOI: 10.1111/j.1752‐1688.2011.00566.x Abstract: Animals, such as birds, are a source of fecal indicator bacteria and pathogens in the environment. Our objective was to determine whether a colony of cliff swallows nesting underneath a bridge would yield a measurable increase in fecal indicator bacteria (specifically Escherichia coli) in the underlying creek. When the swallows were absent, dry‐weather concentrations of E. coli upstream and downstream of the bridge (in Austin, Texas) were below the Texas contact recreation criteria. When the swallows were present, dry‐weather geometric‐mean E. coli concentrations increased significantly from upstream (43 most probable number [MPN]/100 ml) to downstream (106 MPN/100 ml) of the bridge. One exceedance and one near‐exceedance of the Texas single‐sample contact recreation criterion were observed during the swallows’ nesting phase. When the swallows were present, the downstream E. coli geometric‐mean concentration in storm events (875 MPN/100 ml) was significantly higher than the upstream concentration (356 MPN/100 ml), suggesting that runoff flushes swallow feces from the ground into the creek. Although the loading of E. coli from cliff swallows nesting under bridges can be significant (e.g., dry‐weather loading of 3.1 × 108 MPN/day/nest), the zoonotic potential of the cliff swallow must be examined to determine the risk to human health from contact recreation in waters contaminated with cliff swallow feces.  相似文献   

16.
Abstract: Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater‐treatment‐plant effluent, have been well documented, but other sources, particularly wet‐weather discharges from combined‐sewer‐overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater‐treatment‐plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP‐effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10‐100 μg/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 μg/l, and urban stream‐stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP‐effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2‐butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 μg/l) because CSO effluent is untreated, and were higher in urban‐stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near‐surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay.  相似文献   

17.
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.  相似文献   

18.
ABSTRACT: Hydrologic Transport Assessment System (HYTRAS) is a software package that models contaminant transport in rivers and streams, including volatilization, adsorption/desorption, sedimentation, settling, and resuspension. Biodegradation, photolysis, and any other process that can be modeled using a first‐order decay constant can be included as well. HYTRAS originally modeled the transport of radionuclides and has recently been expanded to include transport of chemicals. The transport of chemicals has been validated using data from an accidental release of the chemicals disulfoton and thiometon into the Rhine River in 1986. For these chemicals, sorption is not an important process. For the range of measured flow velocities, HYTRAS was found to bound the peak arrival times. For the range of measured degradation rates, HYTRAS was found to bound the peak concentrations within 400 km of the source and bound the peak concentrations within a factor of two out to 700 km.  相似文献   

19.
Abstract: A predictive model (RIVPACS‐type) for benthic macroinvertebrates was constructed to assess the biological condition of 1,087 streams sampled throughout the eastern United States from 1993‐2003 as part of the U.S. Geological Survey’s National Water‐Quality Assessment Program. A subset of 338 sites was designated as reference quality, 28 of which were withheld from model calibration and used to independently evaluate model precision and accuracy. The ratio of observed (O) to expected (E) taxa richness was used as a continuous measure of biological condition, and sites with O/E values <0.8 were classified as biologically degraded. Spatiotemporal variability of O/E values was evaluated with repeated annual and within‐site samples at reference sites. Values of O/E were regressed on a measure of urbanization in three regions and compared among streams in different land‐use settings. The model accurately predicted the expected taxa at validation sites with high precision (SD = 0.11). Within‐site spatial variability in O/E values was much larger than annual and among‐site variation at reference sites and was likely caused by environmental differences among sampled reaches. Values of O/E were significantly correlated with basin road density in the Boston, Massachusetts (p < 0.001), Birmingham, Alabama (p = 0.002), and Green Bay, Wisconsin (p = 0.034) metropolitan areas, but the strength of the relations varied among regions. Urban streams were more depleted of taxa than streams in other land‐use settings, but larger networks of riparian forest appeared to mediate biological degradation. Taxa that occurred less frequently than predicted by the model were those known to be generally intolerant of a variety of anthropogenic stressors.  相似文献   

20.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号