首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The U.S. Geological Survey is conducting a combined pre/post‐closure assessment at a long‐term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine‐active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine‐disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2‐km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β‐estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater‐derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.  相似文献   

2.
Abstract: The objective of this study is to evaluate the effect of estrogens on fish endocrine disruption in river water and treated wastewater. Endogenous estrogen estrone (E1), 17β‐estradiol (E2), river water, and treated wastewater were used for exposure tests on male Japanese medaka. Vitellogenin induction in male medaka was regarded as the endpoint of endocrine disruption. The effective concentrations of E1 and E2 on vitellogenin induction in medaka were evaluated by breeding medaka for 14 days in tanks with various concentrations of E1 or E2. Vitellogenin induction increased with elapse of time during exposure, with higher estrogen concentrations causing greater vitellogenin induction. According to the test results, the lowest observed effect concentrations (LOECs) of E1 and E2 were estimated to be 31.6 and 5.0 ng/l, respectively; and the E2 equivalent (EEQ) LOEC value of E1 was 5.2 ng‐E2/l, derived by multiplying the relative potency of E1 by that of E2 as estimated in this study. In continuous exposure tests using river water or treated wastewater, the estrogenic activity, an index of total estrogenic potential measured by yeast screen assay and expressed as EEQ, varied widely during the exposure tests, and significant vitellogenin induction was observed after several days of high levels of estrogenic activity in water. Vitellogenin concentration tended to significantly increase if EEQ exceeded the level of 5 ng‐E2/l. The threshold value was substantially the same as the results for E1 and E2 exposure tests of medaka. Consequently, EEQ over 5 ng‐E2/l was revealed to have the potential to cause endocrine disruption of male medaka. As estrogenic activity exceeding 5 ng‐E2/l was observed in some rivers in Japan, total estrogenic potential needs to be further decreased at wastewater treatment plants to prevent fish endocrine disruption.  相似文献   

3.
Abstract: Wastewater impact on drinking water sources was assessed using several approaches, including analysis of three pharmaceuticals and personal care products (PPCPs) – primidone, carbamazepine, and caffeine – as indicators, and determination of precursor concentrations for the disinfection byproduct N‐nitrosodimethylamine (NDMA) using formation potential (FP) tests. Samples were collected in 2006 and 2007 in rivers impacted by wastewater treatment plant (WWTP) discharges, at drinking water treatment plant (DWTP) intakes upstream or downstream from these discharges, and from two WWTP effluents in two watersheds. The levels [10th percentile ? maximum (median)] of primidone, carbamazepine, caffeine, and NDMAFP were 2‐95 (7) ng/l, 2‐207 (18) ng/l, 7‐687 (78) ng/l, and 12‐321 (35) ng/l, respectively. The highest concentrations of primidone, carbamazepine, and NDMA precursors were from one of the WWTP effluents, whereas the highest concentration of caffeine was detected in a river heavily impacted by treated wastewater discharges. The lowest concentrations of the three PPCPs were from a DWTP influent upstream of a metropolitan urban area with minimum wastewater impact. Temporal variations in PPCP and NDMAFP concentrations and streamflows in two selected watersheds were also observed. Furthermore, correlation analysis between caffeine or carbamazepine and primidone was evaluated. The results show that measurement of the two pharmaceuticals and NDMAFP tests can be used to evaluate wastewater impact in different watersheds, whereas caffeine results were more variable.  相似文献   

4.
Water‐quality surveys have confirmed the presence of hormones and antibiotics in surface waters of the United States, which may be of concern to aquatic life. We investigated the concentrations of hormones and antibiotics in surface waters of the state of Delaware to determine – how they compared against environmental thresholds, how they varied across the state, and if they were correlated with land use type. Fifty surface water locations were sampled during early spring and late summer. Water samples were initially screened with ELISA followed by analysis with LC/MS/MS. The measured ranges of hormone concentrations were: 0‐3.71 ng/l for estrone, 0‐4.65 ng/l for estrone‐3‐sulfate, and 0‐6.27 ng/l for 17β‐estradiol. The measured ranges of antibiotics were: 0‐3.30 ng/l for sulfamerazine, 0‐10.74 ng/l for sulfamethoxazole, and 0‐2.29 ng/l for tetracycline. The predicted no‐effect concentration (PNEC) for estrone was exceeded for three samples and the PNEC for 17β‐estradiol was exceeded for 11 samples. In general, concentrations and detection frequencies were lower in the summer than the spring. The highest concentrations of hormones and antibiotics were spatially distributed in agricultural and urban areas; however, the correlations between land use type and the concentrations were weak. This study was the first statewide survey of hormones and antibiotics for Delaware and provided important baseline data on these emerging contaminants.  相似文献   

5.
The representativeness of ambient water samples collected from bridge crossings has occasionally been challenged because critics contend birds nesting on bridges elevate fecal indicator bacteria concentrations over samples collected from river reaches not spanned by bridges. This study was designed to evaluate the influence, if any, of bridge‐dwelling bird colonies on instream bacteria concentrations. Three bridges in central Texas were sampled under dry‐weather conditions for instream Escherichia coli. Two bridges were inhabited by migratory cliff swallows and one was devoid of birds. Numerous samples were collected from locations upstream, at the upstream bridgeface, and downstream of each bridge to determine whether significant increases in E. coli occurred in a downstream direction when birds were present. E. coli values increased significantly at bridgeface and downstream locations compared to upstream locations throughout the nesting season. During peak bird activity in May, bacteria geometric mean concentrations at bridgeface and downstream locations jumped from background levels <50 to >190 colony forming units (CFU)/100 mL, well above the state geometric mean criterion of 126 CFU/100 mL for primary contact recreation use. Results confirmed that under dry‐weather conditions bird colonies can have a significant impact on bacteria concentrations in the vicinity of the bridges they inhabit and therefore, to avoid this impact, monitoring should occur upstream of bridges.  相似文献   

6.
We examined nitrate processing in headwater stream reaches downstream of two wastewater treatment plant outfalls during low streamflow. Our objectives were to quantify nitrate mass flux before and after effluent discharge and to use field and laboratory techniques to assess the mechanism of nitrate uptake. Microcosm experiments were utilized to determine the location of nitrate processing, and molecular biomarkers were used to detect and quantify microbial denitrification. At one site, downstream nitrate mass flux was significantly (= 0.01) lower than sum of upstream and wastewater effluent fluxes, indicating rapid stream assimilation of incoming nitrate in the vicinity of the point source. Microcosm experiments supported the theory that nitrate processing occurs in sediments. Molecular assays for denitrifcation‐associated functional genes nosZ, nirS, and nirK, provided evidence that effluent contained enriched denitrifying communities relative to ambient stream water. Nitrate loss at the site with greater uptake was correlated with sulfate loss (< 0.01; r2 = 0.86), suggesting a possible link between sulfate reducing bacteria and denitrifying bacterial communities. Results suggest there is an opportunity to better understand nitrate dynamics in cases where point sources may act as point sinks under specific sets of conditions.  相似文献   

7.
The Fort Cobb Watershed in Oklahoma has diverse biogeophysical settings and provides an opportunity to explore the association of water quality with a diverse set of landscapes during both wet (April 2007‐December 2009) and dry (January 2005‐March 2007) periods. The objective of this work was to identify spatial patterns in phosphorus (P) (soluble reactive P [SRP] and bioavailable P [BAP]) associated with landscape metrics for two distinct streamflow regimes. Spatial autocorrelation of P was evaluated using contiguous (side‐by‐side) and upstream (upstream:downstream) connectivity matrices. Biogeophysical metrics were compiled for each contributing area, and were partitioned based on association to P concentrations. Results for both SRP and BAP indicated that spatial autocorrelation was present (< 0.05). There was more spatial autocorrelation and stream P concentrations were three to five times higher in the Wet phase than in the Dry phase (< 0.05). Analysis with recursive partitioning resulted in higher R2 with spatial autocorrelation than without spatial autocorrelation and indicated that lateral metrics (topography, soil, geology, management) were better predictors for SRP than instream metrics. During Wet phase, lateral metrics indicative of rapid surface and subsurface water movement were associated with higher P stream concentrations. This research demonstrated that we can detect landscapes more vulnerable to P losses and/or contaminations in either drought or very wet periods.  相似文献   

8.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

9.
Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN).  相似文献   

10.
Abstract: Recent national concerns regarding the environmental occurrence of emerging contaminants (ECs) have catalyzed a series of recent studies. Many ECs are released into the environment through discharges from wastewater treatment plants (WWTPs) and other sources. In 2005, the U.S. Geological Survey and the City of Longmont initiated an investigation of selected ECs in a 13.8‐km reach of St. Vrain Creek, Colorado. Seven sites were sampled for ECs following a Lagrangian design; sites were located upstream, downstream, and in the outfall of the Longmont WWTP, and at the mouths of two tributaries, Left Hand Creek and Boulder Creek (which is influenced by multiple WWTP outfalls). Samples for 61 ECs in 16 chemical use categories were analyzed and 36 were detected in one or more samples. Of these, 16 have known or suspected endocrine‐disrupting potential. At and downstream from the WWTP outfall, detergent metabolites, fire retardants, and steroids were detected at the highest concentrations, which commonly exceeded 1 μg/l in 2005 and 2 μg/l in 2006. Most individual ECs were measured at concentrations less than 2 μg/l. The results indicate that outfalls from WWTPs are the largest but may not be the sole source of ECs in St. Vrain Creek. In 2005, high discharge was associated with fewer EC detections, lower total EC concentrations, and smaller EC loads in St. Vrain Creek and its tributaries as compared with 2006. EC behavior differed by individual compound, and some differences between sites could be attributed to analytical variability or to other factors such as physical or chemical characteristics or distance from contributing sources. Loads of some ECs, such as diethoxynonylphenol, accumulated or attenuated depending on location, discharge, and distance downstream from the WWTP, whereas others, such as bisphenol A, were largely conservative. The extent to which ECs in St. Vrain Creek affect native fish species and macroinvertebrate communities is unknown, but recent studies have shown that fish respond to very low concentrations of ECs, and further study on the fate and transport of these contaminants in the aquatic environment is warranted.  相似文献   

11.
Natural (estradiol, estrone, testosterone, estriol) and synthetic hormones (ethinylestradiol) are constantly excreted into the environment from human and animal sources but little is known of their transport. The purpose of this study was to determine how far along a 100 km river course that hormones could be detected after contamination with sewage effluent or fishpond effluent. Fourteen sites in the Lower Jordan River drainage were sampled (two sites above the sewage effluent contamination, eight sites below the contamination and four tributaries) before and after the dry season of 2002 (Spring and Fall). Samples were tested for testosterone, estrogen (estrone and estradiol combined), estriol, ethinylestradiol, ammonia and fecal coli. It was found that the fecal coli count dropped exponentially (from 250,000 to 60/100 ml3) and the ammonia dropped from 15 to less than 1mg/l over the initial 25 km stretch. Over the same stretch, the hormone values declined by half from their maximum values for testosterone (3.3 ng/l), estriol (8.8 ng/l), ethinylestradiol (6.1 ng/l), and estrogen (4.9 ng/l). From 67 to 100 km mark, testosterone (4.8 ng/l) and estrogen (2.4 ng/l) were still elevated while ethinylestradiol and estriol were >or=1.5 ng/l. The high level of testosterone and estrogen between 67 and 100 km marks was probably due to major discharge from fishponds between 23 and 27 km marks. Levels of ethinylestradiol above 1 ng/l, a level which can affect fish, was seen in 70% (12/16) of the samples tested. The data suggest that hormones in readily measured quantities can be transported considerable distances from the source of pollution.  相似文献   

12.
Responses of lagoon crab, Callinectes amnicola were explored as useful biological markers of heavy metal pollution. The toxicity level of the metals based on the 96-h LC50 values showed that copper with LC50 value of 0.018 mM was found to be two times more toxic than Lead (0.041 mM) against the lagoon crab, C. amnicola. The exposure of the lagoon crab to sublethal concentrations (1/100th and 1/10th of 96-h LC50 values) of Cu and Pb compound, respectively, resulted in the bioaccumulation of the test metals to varying degrees in the selected organs that were dependent on the type of metal and concentration of metal compound in the test media. The degree of metal (Cu and Pb) accumulation was generally in the following order: gills > muscle > heptopancrease. Exposure of the crabs to sublethal concentrations of the metals also caused pathological changes such as the disruption of the gill filaments and degeneration of glandular cells with multifocal areas of calcification in the hepatopancreas. A reduction in the weight of the exposed animals over a 14-day period of observation was also recorded. The significance of these results and the usefulness of the biological endpoints in monitoring programmes aimed at establishing the total environmental level of heavy metals in aquatic ecosystems were discussed.  相似文献   

13.
In this study, we characterize the greatest sediment loading events by their sediment delivery behavior; dominant climate, watershed, and antecedent conditions; and their seasonal distribution for rural and urban land uses. The study area is Paradise Creek Watershed, a mixed land use watershed in northern Idaho dominated by saturation excess processes in the upstream rural area and infiltration excess in the downstream urban area. We analyzed 12 years of continuous streamflow, precipitation, and watershed data at two monitoring stations. We identified 137 sediment loading events in the upstream rural section of the watershed and 191 events in the downstream urban section. During the majority of these events conditions were transport limited and the sediment flush occurred early in the event, generally in the first 20% of elapsed event time. Statistical analysis including two dozen explanatory variables showed peak discharge, event duration, and antecedent baseflow explained most of the variation in event sediment load at both stations and for the watershed as a whole (R2 = 0.73‐0.78). In the rural area, saturated soils combined with spring snowmelt in March led to the greatest loading events. The urban area load contribution peaked in January, which could be a re‐suspension of streambed sediments from the previous water year. Throughout the study period, one event contributed, on average, 33% of the annual sediment load but only accounted for 2% of the time in a year.  相似文献   

14.
Sejkora, Patrick, Mary Jo Kirisits, and Michael Barrett, 2011. Colonies of Cliff Swallows on Highway Bridges: A Source of Escherichia coli in Surface Waters. Journal of the American Water Resources Association (JAWRA) 47(6):1275–1284. DOI: 10.1111/j.1752‐1688.2011.00566.x Abstract: Animals, such as birds, are a source of fecal indicator bacteria and pathogens in the environment. Our objective was to determine whether a colony of cliff swallows nesting underneath a bridge would yield a measurable increase in fecal indicator bacteria (specifically Escherichia coli) in the underlying creek. When the swallows were absent, dry‐weather concentrations of E. coli upstream and downstream of the bridge (in Austin, Texas) were below the Texas contact recreation criteria. When the swallows were present, dry‐weather geometric‐mean E. coli concentrations increased significantly from upstream (43 most probable number [MPN]/100 ml) to downstream (106 MPN/100 ml) of the bridge. One exceedance and one near‐exceedance of the Texas single‐sample contact recreation criterion were observed during the swallows’ nesting phase. When the swallows were present, the downstream E. coli geometric‐mean concentration in storm events (875 MPN/100 ml) was significantly higher than the upstream concentration (356 MPN/100 ml), suggesting that runoff flushes swallow feces from the ground into the creek. Although the loading of E. coli from cliff swallows nesting under bridges can be significant (e.g., dry‐weather loading of 3.1 × 108 MPN/day/nest), the zoonotic potential of the cliff swallow must be examined to determine the risk to human health from contact recreation in waters contaminated with cliff swallow feces.  相似文献   

15.
Abstract: This study used an innovative GIS/remote sensing approach to study historical river channel changes in the Huron River, a wandering gravel‐bedded river in northern Ohio. Eight sets of historical aerial photographs (1958‐2003) span the construction of a low‐head dam (1969), removal of the spillway (1994), and removal of the dam itself (2002). Construction of the dam modified stream gradients >4 km upstream of the small impounded reservoir. This study tracked changes in the polygon size, shape, and centroid position of 12 sand‐gravel bars through a study reach 0.2‐4.1 km upstream of the dam. These bars were highly responsive, tending to migrate obliquely downstream and toward the outer bank at rates up to 9 m/year. Historical changes in the size and position of the bars can be interpreted as the downstream translation of one or more sediment waves. Prior to dam construction, a sediment wave moved downstream through the study reach. Following construction of the dam, this sediment wave became stationary and degraded in situ by dispersion. The growth of bars throughout the study reach during this time interval resulted in a progressive increase in channel sinuosity. Removal of the spillway rejuvenated downstream translation of a sediment wave through the study reach and was followed by a reduction in channel sinuosity. These results illustrate that important geomorphologic changes can occur upstream of low‐head dams. This may be a neglected area of research about the effects of dams and dam removals.  相似文献   

16.
ABSTRACT: Aquatic communities in the Boise River were examined from October 1987 to March 1988 to determine whether they were adversely affected by trace elements in effluents from two Boise wastewater treatment facilities. Trace-element concentrations in the Boise River were less than or near analytical-detection levels and were less than chronic toxicity criteria when detectable. Insect communities colonizing artificial substrates upstream and downstream from the wastewater treatment facilities were strongly associated, and coefficients of community loss indicated that effluents had benign enriching effects. The distributions of trace-element-intolerant mayflies indicated that trace-element concentrations in effluents did not adversely affect intolerant organisms in the Boise River. Condition factor of whitefish was significantly increased downstream from the Lander Street wastewater treatment facility and was significantly decreased downstream from the West Boise wastewater treatment facility.  相似文献   

17.
ABSTRACT:  In 2001, the 1.04‐ha Hornbaker wetland in south‐central Pennsylvania was restored by blocking an artificial drainage ditch to increase water storage and hydraulic retention time (HRT). A primary goal was to diminish downstream delivery of nitrate that enters the wetland from a limestone spring, its main source of inflow. Wetland inflow and outflow were monitored weekly for two years to assess nitrate flux, water temperature, pH, and specific conductivity. In Year 2, spring discharge was measured weekly to allow calculation of nitrate loads and hydraulic retention time. Surface runoff was confirmed to be a small fraction of wetland inflows via rainfall‐runoff modeling with TR‐55. The full dataset (n = 102) was screened to remove 13 weeks in which spring discharge constituted < 85% of total inflows because of high precipitation and surface runoff. Over two years (n = 89), mean nitrate‐nitrogen concentrations were 7.89 mg/l in inflow and 3.68 mg/l in outflow, with a mean nitrate removal of 4.19 mg/l. During Year 2 (n = 47), for which nitrate load data were available, the wetland removed an average of 2.32 kg N/day, 65% of the load. Nitrate removal was significantly correlated with HRT, water temperature, and the concentration of nitrate in inflow and was significantly greater during the growing season (5.36 mg/l, 64%) than during the non‐growing season (3.23 mg/l, 43%). This study indicates that hydrologic restoration of formerly drained wetlands can provide substantial water quality benefits and that the hydrologic characteristics of spring‐fed wetlands, in particular, support effective nitrogen removal.  相似文献   

18.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

19.
A constructed wetland (CW) was strategically placed to treat nitrates in groundwater as part of a watershed‐based farmer engagement process. Using stream water quality data collected before and after installation, this CW was found to reduce stream concentrations of nitrogen from nitrate (NO3‐N) during the growing season by about 0.14 mg/l at mean streamflow, a 17% reduction. Based upon realistic ecological and economic assumptions, about 80 kg of NO3‐N were removed annually by the CW at a cost of around US$30/kg. This per unit cost is at the low range of small wastewater treatment plant costs for nitrates, but higher than the costs of reduced fertilizer application.  相似文献   

20.
Ludwig, Andrea, Marty Matlock, Brian Haggard, and Indrajeet Chaubey, 2012. Periphyton Nutrient Limitation and Maximum Potential Productivity in the Beaver Lake Basin, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 896‐908. DOI: 10.1111/j.1752‐1688.2012.00657.x Abstract: The objectives of this study were to measure periphytic growth responses to enrichment with nitrogen (N), phosphorus (P), and simultaneous N and P using in situ bioassays in streams draining Beaver Reservoir Basin, Northwest Arkansas; compare periphytic growth responses measured with in situ bioassays with a range of land use and point sources; and test the lotic ecosystem trophic status index (LETSI) as a simplifying metric to compare effects of nonpoint‐source pollutant‐limiting variables of N, P, and sediment across the basin. P limitation was observed at sites across a transect of stream orders throughout the basin; however, at the two sites with highest ambient nitrogen concentrations, limitation was often coupled with nitrogen limitation. Nutrients were at nonlimiting levels at both of two sites below wastewater treatment plants in all seasonal deployments. A Michaelis‐Menten growth equation described LETSI as a function of ambient PO4‐P concentrations (p < 0.05); the midpoint (LETSI of 0.50) corresponded with a PO4‐P concentration of approximately 3 μg/l. Change‐point analysis indicated a threshold point at LETSI of 0.80 and 15 μg/l PO4‐P. These low values show that the periphytic community has a high affinity for available P, and that the watershed as a whole is sensitive to available nutrient inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号