首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Biodiesel emulsion fuel is reported as one of the most feasible options capable of generating lower NOx emission than that from fossil fuels. However, oil and water in the emulsion fuel are easily separated and unstable. The aim of the present study is to consider the production and stability of biodiesel emulsion fuel by using tetraglycerin ester (CR-310), i.e., one of lipophilic surfactant, polyglycerol polyricinoleate (PGPR) and biodiesel, i.e., Waste cooking Oil Methyl Ester (WOME) produced based on waste cooking oil. The corresponding heat rate, water content, and viscosity are measured. Emphasis is placed on the effects of water content and surfactant on biodiesel emulsions. It is found that: (i) stable emulsion fuel is obtained by adding at least 2.0% of CR-310 and is maintained over 1 month, (ii) there is no effect of water content on stable emulsion fuel if CR-310 is used over 2.0%, and (iii) the viscosity of emulsion fuels is higher than that of the biodiesel fuel and is gradually increased with an increase in the water content.  相似文献   

2.
In this study, a non-edible seed oil of Alexandrian Laurel (Calophyllum inophyllum L.) with higher free fatty acid content has been harnessed to produce biodiesel by transesterification process. The 20.2% free fatty acid (FFA) content was first reduced to 12.9% by using TOP degumming process. Ortho-phosphoric acid was used to esterify the refined kernel oil. Transesterification reaction was performed with NaOH as an alkaline catalyst and methanol as an analytical solvent. The effects of methanol to oil molar ratio (MR), catalyst concentration (CC), reaction temperature (TP), reaction time (TM), and stirrer speed (SS) on biodiesel conversion were studied to optimize the transesterification conditions using DOE- approach. The experimental study revealed that 9:1 MR, 0.8 wt.% CC, 60°C TP, 75 min TM and 1000 rpm SS were the optimal process control variables. The study indicated that CC was the most important control parameter in optimal methyl ester production. The optimal treatment combination yielded 97.14% of biodiesel. The profile of biodiesel was determined using gas chromatography-mass spectrometry. 1H NMR spectrum of Calophyllum inophyllum methyl ester (CIME) has been reported. The properties of the biodiesel have been found within specifications of the ASTM D6751 and EN 14214 standards and hence could be considered as a suitable alternative to diesel fuel for sustainable circulation of carbon.  相似文献   

3.
Generation of biodiesel from microalgae has been extensively investigated; however, its quality is often not suitable for use as fuel. Our investigation involved the evaluation of biodiesel quality using a native isolate Chlorella sorokiniana MIC-G5, as specified by American Society for Testing and Materials (ASTM), after transesterification of lipids with methanol, in the presence of sodium methoxide. Total quantity of lipids extracted from dry biomass, of approximately 410–450 mg g?1 was characterized using FTIR and 1H NMR. After transesterification, the total saturated and unsaturated fatty acid methyl esters (FAMEs) were 43% and 57%, respectively. The major FAMEs present in the biodiesel were methyl palmitate (C16:0), methyl oleate (C18:1), and methyl linoleate (C18:2), and the 1H NMR spectra matched with criteria prescribed for high-quality biodiesel. The biodiesel exhibited a density of 0.873 g cm–3, viscosity of 3.418 mm2 s?1, cetane number (CN) of 57.85, high heating value (HHV) of 40.25, iodine value of 71.823 g I2 100 g?1, degree of unsaturation (DU) of 58%, and a cold filter plugging point (CFPP) of –5.22°C. Critical fuel parameters, including oxidation stability, CN, HHV, iodine value, flash point, cloud point, pour point, density, and viscosity were in accordance with the methyl ester composition and structural configuration. Hence, C. sorokiniana can be a promising feedstock for biodiesel generation.  相似文献   

4.
Biodiesel is now-a-days recognized as a real potential alternative to petroleum-derived diesel fuel due to its number of desirable characteristics. However, its higher production cost resulting mainly due to use of costly food-grade vegetable oils as raw materials is the major barrier to its economic viability. Present work is an attempt to explore the potential of Eriobotrya japonica seed oil for the synthesis of biodiesel using alkali-catalyzed transesterification. Optimization of production parameters, namely molar ratio of alcohol to oil, amount of catalyst, reaction time and temperature, was carried out using Taguchi method. Fatty acid composition of both oil and biodiesel was determined using GC and H1 NMR. Alcohol to oil molar ratio of 6:1, catalyst amount of 1% wt/wt, 2 h reaction time and 50 °C reaction temperature were found to be the optimum conditions for obtaining 94.52% biodiesel. Highest % contribution was shown by the ‘amount of catalyst’ (67.32%) followed by molar ratio of alcohol to oil (25.51%). Major fuel properties of E. japonica methyl esters produced under optimum conditions were found within the specified limits of ASTM D6751 for biodiesel, hence it may be considered a prospective substitute of petro-diesel.  相似文献   

5.
In this research study, biodiesel has been successfully produced from vegetable seed oil of an indigenous plant Salvadora persica L. that meets the international biodiesel standard (ASTM D6751). The biodiesel yield was 1.57 g/5 g (31.4% by weight) and the in-situ transesterification ester content conversion was 97.7%. The produced biodiesel density was 0.894 g/mL, its kinematic viscosity 5.51 mm2/s, HHV 35.26 MJ/kg, flash point 210°C, cetane no. 61, and sulfur content 0.0844%. Thermal analysis of the biodiesel showed that 97% weight loss was achieved at 595°C with total oxidation of the biodiesel. The production energy efficiency was 0.46% with a lab scale setup, assuming the volume fraction ratio (volume of the sample/total volume of the equipment used). The results revealed that single-step in-situ transesterification method is suitable for the production of biodiesel from S. persica seed oil.  相似文献   

6.
In the present study, response surface methodology (RSM) involving central composite design (CCD) was applied to optimize the reaction parameters of biodiesel production from yellow mustard (Sinapis alba L.) seed oil during the single-step transesterification process. A total of 30 experiments were designed and performed to determine under the effects of variables on the biodiesel yield such as methanol to oil molar ratio (2:1–10:1), catalyst concentration (0.2–1.0 wt.% NaOH), reaction temperature (50–70°C), and reaction time (30–90 min). The second order polynomial model was used to predict the biodiesel yield and coefficient of determination (R2) was found to be at 0.9818. The optimum biodiesel yield was calculated as 96.695% from the model with the following reaction conditions: 7.41:1 of methanol to oil molar ratio, 0.63 wt. % NaOH of catalyst concentration, 61.84°C of reaction temperature, and 62.12 min of reaction time. It is seen that the regression model results were in agreement with the experimental data. The results showed that RSM is a suitable statistical technique for optimizing the reaction parameters in the transesterification process in order to maximize the biodiesel yield.  相似文献   

7.
In this work we applied base catalyzed transesterification to convert non-edible welted thistle oil (Carduus acanthoides) as new non-edible feedstock into biodiesel (Fatty acid methyl esters). The highest biodiesel yield of 88% was obtained using optimized reaction conditions of 70°C and 5:1 molar ratio (methanol:oil). The synthesized esters were characterize and confirmed by the application of NMR and FT-IR techniques. Gas chromatography and mass spectroscopy identified different fatty acids as palmatic acid (C16:0), oleic acid (C18:1), linoleic acid (18:2), arachidic acid (C20:0), eicosanic acid (C20:1), and erucic acid (C22:1) in the oil of welted thistle. Six corresponding methyl esters reported in welted thistle oil biodiesel includes 9-hexadecenoic acid, hexadecanoic acid, 9-octadecadienoic acid, 11-eicosanoic acid, eicosanoic acid and 13-docosenoicacid. Fuel properties, such as density @40°C Kg/L (0.8470), kinematic viscosity @ 40°C c St (4.37), flash point (95°C), cloud point (+4°C), pour point (?5°C), and sulfur contents (0.0112% wt) of the biodiesel produced were compatible with American Society for Testing and Materials D 6751 specifications.  相似文献   

8.
A feasibility study on utilization of non edible oil of Scleropyrum pentandrum was carried out to see its potential as a new source for biodiesel production. Nonedible oil seeds of Scleropyrum pentandrum have oil content of 55–60%. Transesterification of freshly extracted oil in the presence of anhydrous sodium hydroxide at a concentration 1% (w/v oil) and methanol-oil ratio of 40% (v/v oil) yields 90.8% methyl esters under conventional heating. Month old oil requires sulfuric acid pretreatment (esterification) before transesterification. The transesterified oil has a density 889–893 kg/m3; kinematic viscosity of 4.21–5.7 mm2/s; cetane index 46.03; pour point of ?15°C and gross calorific value of 40.135 MJ/kg and oxidative stability of 2.35 hours. The properties are well within the Indian, European and American standard limits recommended for biodiesel except the oxidation stability, which can be improved by adding antioxidant additives. The engine performance studies of B10 and B20 blends of Scleropyrum pentandrum biodiesel (SP biodiesel) with statistical inference confirmed that it can be used as a fuel in CI engines without any engine modifications. The engine exhaust emission analysis showed that the emission of hydrocarbons can be minimized by at least 15–20%, CO emission by 15%, smoke opacity by 10–12% and moderately lesser CO2 and NOx emissions.  相似文献   

9.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

10.
Transesterification of a mixture of vegetable oils with methanol using metal oxide catalysts derived from snail shell (SS) for biodiesel production was investigated. The metal oxides obtained from calcined snail shells in the temperature range of 650°–950 °C and modified by loading different potassium salts were used as a catalyst in the process. The catalysts were characterized by FT-IR, XRD, SEM-EDS, XPS and TGA. Catalytic activities of developed catalysts were also tested by Hammet indicator method and ion exchange method. The best calcination conditions were observed at 850°C for 4 hours based on biodiesel yield. The KF loaded snail shell gave highest biodiesel yield of 98 ± 1% in a batch reactor with highest basicity (15.9 mmoles/g) and basic strength measured by Hammet method. The optimized reaction conditions were: reaction temperature 65°C, reaction time 3 hours, methanol to oil molar ratio 9:1 and catalyst concentration 3wt%. Leaching and reusability tests confirm the stability of the catalyst as it encounters only 3% of leaching and small changes in catalytic activity up to five runs in terms of biodiesel yield.  相似文献   

11.
Increased NOx emission from usage of biodiesel is a burning issue to be dealt with. Many techniques have been adopted to reduce NOx emissions from diesel engines. The present experimental study deals with the analysis of performance and emission characteristics of Cotton Seed oil biodiesel with the addition of natural antioxidant extract of clove. FTIR analysis characterized the antioxidant by the presence of hydroxyl groups denoted by the corresponding wave number. The oxidation stability of the test samples was determined in terms of induction period by means of Rancimat test. The induction periods of the test fuel samples B100, B20, B20+CL1000, and B20+CL2000 were found to be 2.20 h, 2.73 h, 10.19 h, and 11.12 h, respectively. Thus, the addition of Clove antioxidant increased the oxidation stability of the biodiesel. Results show that the addition of antioxidant to biodiesel blend has increased the Brake Thermal Efficiency to a maximum of 4.71% and decreased the Brake Specific Fuel Consumption to a maximum of 6.25% at full-load conditions compared to Cotton Seed biodiesel blend. The addition of Clove extract antioxidant at a concentration of 1000 ppm and 2000 ppm decreases the NOx emission by 23.03% and 26.7%, respectively, at full-load conditions. However, CO emissions increased by 1.12% and 4.49% with the addition of CL1000 and CL2000 to B20, respectively. Similarly, HC emissions increased by 4.19% and 7.35% by the addition of CL1000 and CL2000 to B20, respectively. The increases in smoke with the addition of CL1000 and CL2000 to B20 were 42.48% and 47.71%, respectively.  相似文献   

12.
In the present study crude Garcinia gummi-gutta seed oil was evaluated as a potential feedstock for biodiesel production. Due to the high acid value (29.73 mg KOH/g) the oil was converted to biodiesel by using acid catalyzed esterification process. Further, biodiesel properties of the sample were evaluated, which fulfilled the biodiesel specifications laid by ASTM D6751, EN 14214 and IS 15607. The biodiesel possessed excellent cetane number (66.09) and a high flash point (158°C). In addition, the calorific value (41.03 MJ/kg) was very close to diesel fuel. The results suggest that the G. gummi-gutta can be an alternative source for diesel and can be used as a potential feedstock for biodiesel in India.  相似文献   

13.
In this study, castor oil (CO) has been investigated as a potential source for biodiesel production in Bangladesh. Castor oil has been extracted from the seeds by mechanical press and the Soxhlet extraction method. Maximum oil content of 55.7% has been found by the Soxhlet extraction method. The physicochemical properties such as free fatty acid (FFA) content, kinematic viscosity, saponification value, and density of the oil have been measured by different standard methods. The FFA content and viscosity have been found considerably higher such as 33.5% and 253 mm2/s, respectively. Biodiesel has been prepared using a three-step method comprising of saponification of oil followed by acidification of the soap and esterification of FFA. The overall yield of FFA from CO is found to be around 89.2%. The final step is esterification that produces fatty acid methyl ester (FAME) and a maximum 97.4% conversion of FFA to biodiesel has been observed. The effect of the oil to methanol molar ratio, catalyst concentration, reaction temperature, and time has been investigated for esterification reaction and optimized using the response surface methodology. 1H NMR of crude castor oil and castor oil methyl ester (COME) was studied and analyzed that confirms the complete conversion of castor oil to biodiesel. Finally, the biodiesel, produced under optimum conditions, was characterized using the various standard method and found comparable with petro-diesel and biodiesel standard.  相似文献   

14.
NOx emission is produced during combustion of fuels at high temperature. Excessive release of NOx causes several effects on living organisms and environment. In this work, the efforts to reduce NOx emission by developing electrochemically activated cells (EACs) for a diesel engine fuelled with diesel and biodiesel fuel are discussed. EAC technique is vital after treatment technology attempted in this work to simultaneous control of NOx, HC, and PM emissions. In this method, two types of EACs were developed. The CuO–YSZ electrolyte and CuO–YSZ electrolyte with BaO coating were developed and tested with diesel and biodiesel exhaust. Compared with diesel fuel, use of biodiesel fuel increased NOx emission by 11% and PM emission was slightly reduced with biodiesel, which was due to the presence of fuel bond oxygen content in biodiesel. The investigation has demonstrated low-temperature activation of the EACs at 250–350°C which was due to the addition of CuO to YSZ. In this work, maximum NOx reduction was achieved for CuO–YSZ cells with BaO NOx storage and the simultaneous control of HC and PM emission also was observed in this technique. NOx reduction by EAC is a vital technique and can be retrofitted with any diesel engine for emission reduction.  相似文献   

15.
In this study, the rice bran oil (RBO) has been converted into methyl ester with an aid of transesterification reaction. Chemically, transesterification means conversion of triglyceride molecule or a complex fatty acid into alcohol and ester by removing the glycerin and neutralizing the free fatty acids. The B20 blend samples [80% diesel + 20% biodiesel] were prepared for each methyl ester obtained from RBO and then the cerium oxide (CeO2) nanoparticles were added to the each B20 blend samples at a dosage of 50 ppm and 100 ppm with an aid of ultrasonicator. Moreover, in the absence of any engine modifications, the performance and emission characteristics of those blend samples have been investigated from the experimentally measured values such as density, viscosity, cloud point, pour point, and calorific value while the engine performance was also analyzed through the parameters like exhaust gas temperature (EGT), brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), exhaust emission of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx). The experimental results reveal that the use of CeO2 blended biodiesel in diesel engine has exhibited good improvement in performance characteristic and reduction in exhaust emissions.  相似文献   

16.
This study details the effect of the Di-Methyl-Ether(DME) as a cetane improver on neat cashew nut shell biodiesel (CBD100) to assess the emission and performance engine characteristics. Four fuels, namely, diesel, biodiesel (Cashew nut shell Methyl Ester), a blend of CBD100-10% and 20% by volume of DME (CBD90DME10and CBD80DME20) are prepared and tested on a stationary research diesel engine. The experimental parameters for CBD80DME20 showed a 1.6% increase in thermal efficiency thereby reducing 4.1% of fuel consumption than the neat biodiesel at peak conditions. Experimental result exposed that 20% of DME reduces 3.4% CO, 4.2% HC and 8.8% NOx and 8.4% smoke emissions of CBD100. Based on the outcome of this work, it is clear that CBD80DME20 shall be employed as a substitute fuel for diesel engine.

Abbreviations: CI: Compression ignition; CBD100: Cashew nut shell Bio-diesel; DME: Di-methyl ether; CO: Carbon monoxide; BTE: Brake thermal efficiency; BSFC: Brake specific fuel consumption; CBD100: 100% Biodiesel; CBD90DME10: 90% biodiesel + 10% di-methyl-ether; CBD80DME20: 80% biodiesel + 20% di-methyl-ether; HC: Hydrocarbon; NOx: Oxides of nitrogen.  相似文献   


17.
A series of heterogeneous KF/CaO catalysts modified with transition metals (lanthanum, cerium, and zirconium) were prepared via wet impregnation method and applied to the trsansesterification process of waste cooking oil (WCO) as feedstock with methanol to biodiesel production. The structure, performance of the solid catalysts was characterized by X-ray diffraction (XRD), temperature programmed desorption of CO2 (CO2-TPD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The effect of methanol/oil molar ratio, 1reaction time, reaction temperature, catalyst amount, and stability was investigated. The results showed that 10 wt% of lanthanum, cerium, and zirconium improved the catalytic activity of KF/CaO catalyst. The maximum catalytic activity using the lanthanum doping of 10wt% on KF/CaO catalyst was reached 98.7% under the optimal reaction condition of methanol/oil molar ratio of 12:1, reaction for 1 h at reaction temperature of 65°C, and 4% (wt/wt oil) catalyst amount. In addition, the FAME yield of KF/CaO/La catalyst remained higher than 95% after 10 cycles. The promotional effect of lanthanum doping could be attributed to the enhancement of the basicity strength of KF/CaO catalyst and block the leach of Ca2+ in the transesterification reaction.  相似文献   

18.
ABSTRACT

Sodium hydroxide is ideal in removing lignin from lignocellulosic materials at an effective operational cost. Two-stage NaOH pretreatment was employed herein to investigate lignin and hemicellulose removal and understand the morphology of Napier grass (Pakchong 1) (Pennisetum purpureum), which is considered lignocellulosic due to its high carbohydrate content. NaOH was used at different concentrations (0, 1, 2, 3, and 4 wt.%) and presoak times (1, 2, 3, and 4 h). The results demonstrated that 3 wt.% NaOH at 121°C without presoak resulted in 83.5% lignin removal, with a cellulose to lignin ratio of 3.0. Moreover, the treated samples showed cracking and irregular patterns at optimal conditions.  相似文献   

19.
Waste from wastewater treatment plants (WWTP) for Helianthus annuus L. production may be a viable solution to obtain biodiesel. This study achieved two objectives: assess the agronomical viability of waste (wastewater and sludge) from the Alcázar de San Juan WWTP in central Spain for H. annuus L. production; use H. annuus L. seeds grown in this way to obtain biodiesel. Five study plots, each measuring 6 m × 6 m (36 m2), were set up on the agricultural land near the Alcázar de San Juan WWTP. Five fertilizer treatment types were considered: drinking water, as the control; treated wastewater; 10 t ha?1 of air-dried sewage sludge; 20 t ha?1 of air-dried sewage sludge; 0.6 t ha?1 of commercial inorganic fertilizer. Soil, irrigation water, sewage sludge, crop development and fatty acid composition in achenes oil were monitored. The 20 t ha–1 dose of sewage sludge proved effective to grow H. annuus L. with similar results to those grown with a commercial fertilizer. However, precautions should be taken when irrigating with wastewater because of high salinity and nutrient deficiency. Sunflower oil was composed mostly of linoleic and oleic acid. The remaining fatty acids were linolenic, estearic, nervonic, palmitoleic, and palmitic.  相似文献   

20.
Biofuel blends produced from Jatropha (Jatropha curcas) and Karanja (Pongamia pinnata) oil were evaluated for their combustion properties. Two kinds of blends (regular diesel with Jatropha and Karanja oil) were prepared at 20% volume to the diesel and tested as alternative fuels in single cylinder (vertical), water-cooled, direct injection diesel engine at the rated speed of 1500 rpm. The performance of the engine in terms of thermal efficiency at full load for diesel was 30%. For Jatropha and Karanja biodiesel blends, the thermal efficiencies were 29.0% and 28.6%, respectively. The maximum cylinder pressure and ignition delay for biodiesel fuel blends are very close to that of regular diesel. Prolonged combustion was observed for Karanja oil blend in comparison to Jatropha oil blend. The combustion pattern also reveals the slow burning characteristics of vegetable oils and this study indicates that the blended biofuels have combustion characteristics that are similar to regular diesel fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号