首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the use of Cu/Al2O3, Co/Al2O3, Fe/Al2O3, and Ni/Al2O3 catalysts for the growth of carbon nanotubes (CNTs). These CNTs were used as support for Co catalyst preparation and Co/CNT catalysts were applied to a catalytic reaction to remove BTEX, PAHs, SO2, NO, and CO simultaneously in a pilot-scale incineration system. The analyzed results of EDS and XRD showed low metal content and good dispersion characteristics of the Al2O3-supported catalysts by excess-solution impregnation. FESEM analyzed results showed that the CNTs that were synthesized from Co, Fe, and Ni catalysts had a diameter of 20 nm, whereas those synthesized from Cu/Al2O3 had a diameter of 50 nm. Pilot-scale test results demonstrated that the Co/CNT catalyst effectively removed air pollutants in the catalytic reaction and that there was no obvious deactivation by Pb, water vapor, and coke deposited in the process. The thermal stabilization at 250 °C and hydrophobicity properties of CNTs enhanced the application of CNT catalysts in flue gas.  相似文献   

2.
In this study, cobalt supported oil palm shell activated carbon (Co/OPS-AC) and ZSM-5 zeolite (Co/ZSM-5) catalysts have been prepared for dry reforming of methane. Cobalt ratios of 6.0 and 14.0 wt% were deposited via wet impregnation method to the OPS-AC and ZSM-5 catalysts. The catalysts were characterized by XRD, N2 adsorption--desorption isotherms, BET surface area, SEM, FESEM-EDX, TPR-H2, and TPD-NH3. The dry reforming of methane was performed using a micro reactor system under the condition of 10,000 ml/h.g-cat, 3 atm, CH4/CO2 ratio of 1.2:1.0 and temperature range from 923 K to 1023 K. The gaseous products were analyzed by gas chromatography (GC) with thermal conductivity detector (TCD) and further quantified to determine the conversions of CH4 and CO2, and the yields of CO and H2. Experimental results revealed both catalysts exhibited lower conversions of CO2 and CH4 with the increase in temperature from 923 K to 1023 K. The reduced conversions may be due to the formation of carboneous substance on the catalyst known as coking. Comparatively, Co/OPS-AC gave higher conversions of CO2 and CH4 as well as higher yields of H2 and CO as it has a higher surface area than Co/ZSM-5 which subsequently rendered higher activity for the reforming of methane. With the increasing cobalt loadings and reaction temperature, OPS-AC(14) catalyst exhibited improved activity and H2/CO ratio. Based on these results, cobalt supported OPS activated carbon catalyst was suggested to be more effective for CO2 and CH4 conversions.  相似文献   

3.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

4.
Constant hydrogen generation via a hydrogen generator is evaluated from the methanolysis of sodium borohydride (NaBH4) using Co/Al2O3 and MnOx/Al2O3 catalysts. Chemical borohydrides coupled with catalysts can be used for compact storage and to create efficient generation systems. Thus, we first report the catalytic activity of MnOx/Al2O3, which is synthesized using the simple wet-impregnation method, for the methanolysis reaction. The results indicate that both catalysts can effectively accelerate the methanolysis reaction and provide constant hydrogen generation rates. Thus, we integrate this hydrogen generation system into a proton exchange membrane fuel cell stack (PEMFC) to determine whether it can be used as a portable power supply. As a result, this fuel cell system operates at 40 W for 1 hr using the hydrogen source supplied from the catalytic methanolysis reaction.  相似文献   

5.
A 100 W proton exchange membrane fuel cell (PEMFC) system with a sodium borohydride (NaBH4) hydrogen generator was investigated for small unmanned aerial vehicles (UAVs). The performance of a cobalt–phosphorous/nickel foam catalyst was evaluated to determine the change in catalytic activity under real operating conditions. The response time increased owing to oxidation of the metals and accumulation of sodium; however, the catalyst remained active at high reaction temperatures. A NaBH4 hydrogen generator with the catalyst was developed for a 100 W PEMFC system. The hydrogen generation rate was stable for 3 h, and the conversion efficiency was 97.8%. Finally, a 100 W PEMFC system with the NaBH4 hydrogen generator was investigated for small UAVs. The maximum power and energy density of the PEMFC system were 95.96 W and 185.2 Wh/kg, respectively.  相似文献   

6.
Influence of catalyst calcination temperature on the catalyst characteristics and catalytic transesterification of Jatropha curcas oil for biodiesel production was studied by using sodium zirconate (Na2ZrO3) solid base catalyst. Na2ZrO3 catalysts were prepared by impregnation method followed by calcination at temperatures of 700, 800, and 900°C. The prepared catalysts were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Important parameters influencing the catalytic activity and fatty acid methyl ester yield were investigated. It was found that the increase in calcination temperature showed marked increase in activity due to the increased porosity and presence of tetragonal zirconia. Investigation of the reusability of the catalysts showed that the catalytic activity was retained even after five cycles of reaction.  相似文献   

7.
A series of heterogeneous KF/CaO catalysts modified with transition metals (lanthanum, cerium, and zirconium) were prepared via wet impregnation method and applied to the trsansesterification process of waste cooking oil (WCO) as feedstock with methanol to biodiesel production. The structure, performance of the solid catalysts was characterized by X-ray diffraction (XRD), temperature programmed desorption of CO2 (CO2-TPD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The effect of methanol/oil molar ratio, 1reaction time, reaction temperature, catalyst amount, and stability was investigated. The results showed that 10 wt% of lanthanum, cerium, and zirconium improved the catalytic activity of KF/CaO catalyst. The maximum catalytic activity using the lanthanum doping of 10wt% on KF/CaO catalyst was reached 98.7% under the optimal reaction condition of methanol/oil molar ratio of 12:1, reaction for 1 h at reaction temperature of 65°C, and 4% (wt/wt oil) catalyst amount. In addition, the FAME yield of KF/CaO/La catalyst remained higher than 95% after 10 cycles. The promotional effect of lanthanum doping could be attributed to the enhancement of the basicity strength of KF/CaO catalyst and block the leach of Ca2+ in the transesterification reaction.  相似文献   

8.
In this study, economically favorable CoCl2 catalysts at four different amounts were supported on activated carbon (AC) for NaBH4 dehydrogenation. Supported catalyst could achieve hydrogen release for 2,060 cycles, which is equivalent to 103 days of uninterrupted operation. Slow and continuous hydrogen release was observed in all experiments. Even 1 g of NaBH4 can carry 1.2 L of hydrogen, and in hydrolysis process, it liberates 2.5 L of hydrogen that indicates the decomposition of water. EDX analysis and reverse burette measurements show that CoCl2 could be homogeneously distributed on and permanently joined to the support surface. Kinetic investigation of the dehydrogenation reaction fits zero order kinetics, and activation energy was calculated to be 48 kJ/mol.  相似文献   

9.
This study experimentally investigates lean methane/air premixed combustion in a catalytic zirconia foam burner. The burner is packed with an inert perforated alumina plate at the inlet preheating zone and with catalytic zirconia foams at the combustion zone. Catalytic foams are prepared by using a modified perovskite catalyst (LaMn0.4Co0.6O3), in which the transition metal ion Co is partially substituted by Mn and supported by inert zirconia foam. Results indicate that the flame stability limits of both catalytic and inert burners expand with increasing equivalence ratios. The stable combustion region of the catalytic burner is larger than that of the inert burner. The heterogeneous catalytic combustion effect can decrease and increase the lower and upper flame stability limits, respectively. The central temperatures of the flame fronts are higher in the catalytic burner than in the inert burner. The pressure drops of the catalytic burner are almost equal to those of the inert burner in cold flows but are significantly higher than those in the inert burner in reaction flows. Less amounts of carbon monoxide, nitric oxides, and unburned hydrocarbon emissions are detected in the catalytic burner relative to the inert burner. The thermal radiation efficiencies of the catalytic burner vary between 0.24 and 0.39 and are favorably superior to those of the inert burner, ranging from 0.11 to 0.20.  相似文献   

10.
This study presents a comparative analysis of sizing of metal hydride tank filled with different alloys. Alloys include solid solutions and intermetallic compounds of the generic families AB5, AB2, AB, A2B. The effects of the different alloys on the sizing of metal hydride hydrogen storage tanks are complicated and depend on many factors. In this paper, a thermoeconomic optimization analysis with a simple algebraic formula was presented for the estimation of optimum metal hydride tank surface area for heat transfer enhancement. The optimum area of the metal hydride tank filled with commercially available different alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) was evaluated and compared by the developed method. The optimum net savings and the value of payback were determined for four alloys. It is found that mathematical model can be employed for the determination of optimum metal hydride tank design and increasing net savings according to alloy types. The optimum areas of the tanks filled with four alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) were calculated as 0.136, 0.130, 0.133, and 0.173 m2, respectively. The optimum net savings for tanks filled with four alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) are about 461.0, 409.3, 419.6, and 979.6 $ and the values of payback are about 1.98, 2.1, 2.17, and 1.37 years, respectively. Excessive area of the metal hydride tank would not be as economical as the optimum tank area. Thermal management of metal hydride tank must be designed for optimum points calculated at which maximum savings occur.  相似文献   

11.
(CdS)x/(ZnS)1–x nanoparticles were synthesized as a visible light-driven photocatalyst using the stepped microemulsion technique with a series of the ratio factors (x). The photocatalytic test results showed that (CdS)x/(ZnS)1-x with x = 0.8 had the highest photo-reactivity for H2 production from water under visible light. The composite (CdS)0.8/(ZnS)0.2 catalyst had a heterogeneous structure that exhibited a much greater photocatalytic hydrogen production activity than either pure CdS or the homogeneous Cd0.8Zn0.2S solid solution. ZnS deposition also was shown to largely improve the stability of CdS in the heterostructured CdS/ZnS catalyst. Thermal treatment of the catalyst, i.e., annealing (CdS)0.8/(ZnS)0.2 at 723 K, improved the crystallinity of the catalyst and increased its photocatalytic H2 production rate by more than 36 times. Deposition of Ru on the surface of the catalyst particles by in situ photo-deposition further increased the photo-H2 generation rate by 3 times. The photocatalyst of 0.5%Ru/CdS/ZnS achieved the highest H2 production activity, at a rate of 12650 μmol/g-h and with a light to hydrogen energy conversion efficiency of 6.5%.  相似文献   

12.
Cracking, steam reforming, dry reforming, and combined steam and dry reforming of toluene in model syngas were performed using catalysts to simulate tar removal produced during biomass gasification. The catalysts were prepared by adding Ru, Ca, and Mn to Ni-based catalysts, and their properties were measured using BET, pulse CO chemisorption, XRD and TG. In steam and dry reforming of toluene, a high toluene conversion was observed with increasing Ca content in the catalyst and catalysts containing Ca showed a higher activity than those containing Mn. In combined steam-dry reforming with syngas, 1%CaNiRu/Al2O3 indicated a conversion of 93.9% at 800°C.  相似文献   

13.
The petroleum refining industry makes extensive use of catalysts, containing critical metals, such as, Mo, Co and Ni, for the desulphurization of various oil fractions. The selective recovery of these metals from two uncrushed and at low temperature calcined industrial hydrodesulphurization (Mo---Co/Al2O3 and Mo---Ni/Al2O3---SiO2) catalysts was studied, applying a two-step alkali-acid procedure. Fundamental kinetic aspects of the process, such as, reaction time, leaching reagents concentration and reaction temperature, were studied. Recoveries up to 97% for Mo and up to 92% for Co or Ni in separate solutions were achieved, using low cost and easily available reagents, such as sodium hydroxide and sulphuric acid.  相似文献   

14.
This article focuses on the optimization of the production of fatty acid ethyl esters from soybean oil using CaO-based heterogeneous catalysts. Three different catalytic promoters were evaluated: Magnesium, zinc, and potassium. The reaction has evaluated the promoter content (promoter to calcium molar ratio), catalyst load, alcohol to oil molar ratio, and temperature. Response surface methodology (RSM) was used to evaluate the influence of each variable on the yield of biodiesel. The addition of K2O or MgO in the catalyst has enhanced the yield in fatty acid ethyl esters, while the use of ZnO as a promoter was not successful.  相似文献   

15.
A carbon/CoFe2O4 composite was synthesized by precipitation method. The morphology of the composite was analyzed using scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Fourier Transform Infrared Spectra, and vibrating sample magnetometry. The electrocapacitive behaviors of the composite has been studies by cycle voltammogram and galvanic charge/discharge. The size of the nanoparticles carbon composite of CoFe2O4 was uniform and 209 nm. Due to a high percent of carbon, electrochemical measurements showed electrical double layer mechanism. Specifically, the carbon/cobalt ferrite electrode exhibited high specific capacitance of 102.5 F g?1 at a current density of 0.16 A g?1, and high rate capability with 30% retention of capacitance even up to 20 A g?1, and excellent cycling stability with 81.5% retention of the initial capacitance after 6000 charge/discharge cycles, supporting that the carbon cobalt ferrite composite electrode could be a potential candidate for supercapacitor application.  相似文献   

16.
This article presents the performance analysis of a single-stage metal hydride-based heat transformer (SS-MHHT) working with three different alloy pairs, namely LaNi4.6Al0.4/MmNi4.15Fe0.85, LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8-Mn0.2, and Zr0.9Ti0.1Cr0.9Fe1.1/Zr0.9Ti0.1Cr0.6-Fe1.4. The performances of the SS-MHHT are predicted by solving the conjugate heat and mass (hydrogen) transfer equations in cylindrical coordinates. The effects of various parameters such as heat output (TH), heat input (TM), and heat sink (TL) temperatures on the coefficient of performance (COPHT), specific heating power (SHP) and second law efficiency (ηE) are presented. The effects of overall heat transfer coefficient and mass ratio on the coefficient of performance (COPHT) and specific heating power (SHP) are also presented. Numerical results are compared with the experimental data reported in the literature, and a good agreement is found between them. The maximum COPHT of 0.436 and SHP of 54 W/kg are obtained for LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8-Mn0.2 pair. For a given operating temperatures of TM = 358 K and TL = 298 K, the maximum temperature lift of about 50 K is predicted for Zr0.9Ti0.1Cr0.9Fe1.1 /Zr0.9Ti0.1Cr0.6Fe1.4 pair.  相似文献   

17.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   

18.
In the present work, a novel cellulose-based porous heterogeneous solid acid catalyst encapsulation of ferriferous oxide (Fe3O4) and sulfonated graphene (GO-SO3H) into cellulose to form composite porous microspheres catalyst (GO-SO3H/CM@Fe3O4) was synthesized and evaluated for biodiesel production from Pistacia chinensis seed oil. The SEM, EDS and FTIR analysis revealed that the catalyst GO-SO3H/CM@Fe3O4 owned stronger active sites and GO-SO3H dispersed well in porous surface and inside of cellulose support. Under the optimum conditions, microwave-assisted transesterification process was carried out with the best catalyst amount, i.e. 5 wt% GO-SO3H/CM@Fe3O4 (weight ratio of GO-SO3H/cellulose), and conversion yield reached 94%. The prepared catalyst could be easily separated from reaction solution by extra magnetic field and reclaimed at least five runs.  相似文献   

19.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   

20.
Transesterification of a mixture of vegetable oils with methanol using metal oxide catalysts derived from snail shell (SS) for biodiesel production was investigated. The metal oxides obtained from calcined snail shells in the temperature range of 650°–950 °C and modified by loading different potassium salts were used as a catalyst in the process. The catalysts were characterized by FT-IR, XRD, SEM-EDS, XPS and TGA. Catalytic activities of developed catalysts were also tested by Hammet indicator method and ion exchange method. The best calcination conditions were observed at 850°C for 4 hours based on biodiesel yield. The KF loaded snail shell gave highest biodiesel yield of 98 ± 1% in a batch reactor with highest basicity (15.9 mmoles/g) and basic strength measured by Hammet method. The optimized reaction conditions were: reaction temperature 65°C, reaction time 3 hours, methanol to oil molar ratio 9:1 and catalyst concentration 3wt%. Leaching and reusability tests confirm the stability of the catalyst as it encounters only 3% of leaching and small changes in catalytic activity up to five runs in terms of biodiesel yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号