首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines energetic and exergetic performances of display cases’ units used in market applications depending on different refrigerants. Besides CO2 emission potential of each refrigerant based on exergetic irreversibility obtained from analyses is calculated by the method of Total Equivalent Warming Impact (TEWI). In this study, 1 kW cooling capacity and vapor compression cooling cycle is taken as reference and refrigerants of R-22, R-134a, R-404A, and R-507 together with alternative refrigerant R-407C and R152a are examined separately. According to analyses, R-404A gas, used widely in market applications, has low performance with average COP 3.89 and average exergy efficiency 55.20%. R-152a gas has the best performance by the thermodynamics parameters including COP 4.49, exergy efficiency 63.79%, and 0.23 kW power consumption and emission parameter 14097.490 ton CO2/year. Although COP is used as a criterion to evaluate the systems, this study finally emphasizes the importance of exergy analysis and TEWI method which are important methods to determine irreversibility and emission potential of the systems.  相似文献   

2.
This study examines parametric approaches to the calculation of refrigerant-based CO2 emissions in different cooling areas. Both the exergy analyses of refrigerants, used in domestic, commercial, transportation and industrial applications, and the environmental performances regarding exergetic irreversibility are investigated separately. Then, CO2 emissions caused by systems are examined via two different parameters, I°) Environmental Impact Factor and ??°) Integrated Impact Factor (CIF). The study is based on a vapor compression cooling cycle model, commonly preferred by cooling applications, and the analyses have been made for 1 kW cooling capacity in relation to evaporator temperatures of the systems. In all cooling application, R134A gas stands out among the others in terms of coefficient of performance and exergy efficiency. Moreover, both emission analyses show that it has the lowest emission value. The paper concludes with an evaluation of the reasons for the refrigerant choice, the design and the selection of such a system, and why exergetic and environmental parameters should be preferred.  相似文献   

3.
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%.  相似文献   

4.
Abstract

Heating and air-conditioning systems have very low exergetic efficiency as they dissipate primary energy resources at low temperatures usually between 90 and 60°C. This compounds the problem that buildings spend approximately 30% of all the energy consumed in the U.S. for heating and air-conditioning. The overall result is a large entropy production and long-term environmental degradation that can be resolved only by substituting primary energy resources by low-temperature, waste, or alternative energy resources, usually available below 50°C. For such a replacement to be feasible the environmental cost of exergy production must be factored into calculations and compatible HVAC systems must be developed without any need for temperature peaking or equipment oversizing. This article addresses environmental and often-conflicting problems associated with exergy production by HVAC systems and presents an analytical optimization and control algorithm. Results indicate that when a careful design optimization is accompanied by a dynamic control of the split between radiant and convective means of satisfying thermal HVAC loads, exergy efficient sustainable buildings may be cost effective and environmentally benign.  相似文献   

5.
Seaplanes have become an important tool along with rapidly developing technology in modern transportation for many countries related to sea. Considering the environmental evaluation for these aircraft, decreasing fossil fuels consumption and energy efficiency are important points for sustainability. For this purpose, in this study, first, the energy and exergy analyses based on the real data of a turboprop engine used in seaplane taken as the reference were performed. Then, new indicators developed for the sustainable propulsion index were examined and evaluated separately. The analyses were made for an altitude of 9000 ft and three different dead state temperatures of ?33°C, ?3°C, and 27°C. According to the analyses, while the average energy efficiencies were found to be 34.7%, 37.8%, and 40.7%, the average exergy efficiencies were found to be 19.24%, 21.25%, and 23.20%, respectively. In addition, the improvement potential due to irreversibility and entropy production for each case was also calculated and the results of the sustainable emission index were found to be very low. At the end of the study, the results were evaluated and some suggestions for the effective use of energy in the seaplanes were made.  相似文献   

6.
In this study, a comparative thermodynamic performance analysis of cascade system (CCS) for cooling and heating applications is presented and compared for different refrigerant couples. The CCS consists of the low-temperature cycle (LTC) and high-temperature cycle (HTC). The CO2 was used as working fluid in LTC, whereas the HFE 7000, R134a, R152a, R32, R1234yf, and R365mfc refrigerants were used in HTC. The heating and cooling coefficients of performance (COPht, COPcl) and exergy efficiency of CCS are investigated parametrically according to various factors such as the evaporator, condenser, and reference temperatures. After thermodynamic analyses are completed, the COPcl of CCS is obtained as 1.802, 1.806, 1.826, 1.769, 1.777, and 1.835 for CO2-HFE7000, CO2-R134a, CO2-R152a, CO2-R32, CO2-R1234yf, and CO2-365mfc refrigerant couples, respectively. Furthermore, the heat exchanger has the highest exergy destruction rate, whereas the expansion valves have the lowest of exergy destruction rate.  相似文献   

7.
The rapid decrease of energy resources has accelerated studies on energy efficiency. Energy efficiency refers to the effective use of energy, in other words, completing a specific task to the required standard by using less energy. Exergy is an effective instrument to indicate the effective and sustainable use of energy in systems and processes. Transportation is an important part of human life. The studies on energy saving and the effective use of energy in different areas around the world have also increased for transportation systems and vehicles. With the more effective use of fuel, there will be potential benefits for the environment as well as a reduction in operating costs. This study includes energy and exergy analyses as well as a sustainability assessment by using C8H16 as a fuel at different engine powers (150–600 SHP (shaft horse power)), for the piston-prop helicopter engine. The maximum exergetic sustainability index was found at the power that provided the maximum energy and exergy efficiency. As a result of this index, the lowest waste exergy ratio, the lowest exergy destruction factor, and the lowest environmental impact factor were obtained. The highest exergy destruction and the highest exergy loss value were obtained at maximum power (600 SHP).  相似文献   

8.
Heat rejection pressure plays an important role in designing a transcritical CO2 refrigeration system, and it has an optimal value to maximize the system’s coefficient of performance (COP). With a thermodynamic simulation model, the optimal heat rejection pressure is studied in the paper for an expander cycle, as well as conventional throttle valve cycle. The effects of compressor efficiency, expander efficiency, gas cooler outlet temperature, and evaporation temperature on the optimal heat rejection pressure are analyzed. It is the first time for a transcritical CO2 expander cycle that the optimal heat rejection pressure is correlated with the gas cooler outlet temperature and the evaporation temperature at given compressor efficiency and expander efficiency. The average deviation from the correlation to simulation results is less than 1.0%. The correlation provides a guideline to system development and performance optimization of a transcritical CO2 expander cycle.  相似文献   

9.
Natural refrigerant ammonia R-717 and synthetic azeotropic refrigerant R-507 (a blend containing 50% R-143a and 5% R-125 by weight) are used in a wide range of refrigeration systems especially in low-temperature applications. R-717 and R-507 are ozone friendly refrigerants, which have no Ozone Depletion Potential (ODP). Global Warming Potential (GWP) of R-717 and R-507 is equal to zero and 3300, respectively. The high amount of R-507 GWP demonstrates its negative effect on the Earth’s climate change. In this study, a refrigerated warehouse located in Cincinnati, Ohio was modeled and the total energy demand and Coefficient of Performance (COP) was evaluated by eQUEST using two scenarios. The R-717 and R-507 were used as refrigerant in the first and second scenarios, respectively. The results showed that using R-717 in the refrigeration system leads to a 15% energy saving and a higher COP compared to R-507 in all working conditions. The only exception is that at an evaporating temperature below ?35°C which COP values of both refrigerants are approximately equal.  相似文献   

10.
Design and modernization of the micro turbojet engine technology have an important problem related to fuel consumption in terms of economics and environmental. For this purpose, in this study, first, energy and exergy efficiencies of the Jet A-1 and seven different alternative fuels were examined. Then, Exergy—based sustainability indicators were evaluated via exergetic irreversibility seperately. For this purpose, operational data of SR-30 micro-turbojet engine was taken as reference. According to this, the exergy efficiencies of engine as fuel for blending of methanol and ethanol were fixed with 22.35% and 20.56%, respectively. At the end of the study, some evaluations about alternative fuels and sustainability were made.  相似文献   

11.
In this study, exergetic and exergoeconomic analysis methods are applied to a four-cylinder, spark ignition (SI), naturally aspirated and air-cooled piston-prop aircraft engine in the cruise phase of flight operations. The duration of cruise is selected to be 1 h. Three parameters, altitude, rated power setting (PS), and air-to-fuel ratio (AF), are varied by the calculation of the max–min values of exergy analysis. Based on the results of energy analysis, the values for the maximum energy efficiency and fuel consumption flow rate are calculated to be 21.73% and 28.02 kg/h, respectively, at 1000-m altitude and 75% PS. The results of exergy analysis indicate that all exergetic values vary from 65% to 75% PS, while this increase is not seen in exergoeconomic analysis. While the maximum exergy input rate is obtained to be 405.60 kW, exergy efficiency has the minimum value with 14.43% and exergy destruction rate has the maximum value with 168.48 kW. These values are achieved at 3000-m altitude and 18 AFs. The maximum average exergy cost of the fuel is calculated to be 130.77 $/GJ at 1000-m altitude, 13 AF ratios, and 65% PS. At this point, while the minimum cost rate associated with the exergy destruction is obtained to be 40.29 $/h, the maximum exergoeconomic factor is found to be 19.98%.  相似文献   

12.
This paper focuses on the exergetic sustainability indicators of a medium-range commercial aircraft engine for constant reference environment and ground running conditions. First, a detailed exergy analysis of turbofan engine have been performed based on engine test cell parameters. Starting from the sustainability considerations and the second law of the thermodynamics, the paper presents six exergy-based sustainability indicators. The indicators of the turbofan engine developed here in conjunction with exergetic analysis and sustainable development are exergy efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy rate, environmental effect factor, and exergetic sustainability index. The investigated sustainable indicators have been calculated by using exergy analysis outputs for aircraft ground running condition. Results from this study show that values of exergy efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy rate, environmental effect factor, and exergetic sustainability index of investigated turbofan engine are found to be 0.315, 0.685, 0.408, 0, 2.174, and 0.460, respectively. These parameters are expected to quantify how the turbofan engine and aircraft become more environmentally benign and sustainable.  相似文献   

13.
This paper describes the application of exergy and extended exergy analyses to large complex systems. The system to be analysed is assumed to be at steady state, and the input and output fluxes of matter and energy are expressed in units of exergy. Human societies of any reasonable extent are indeed Very Large Complex Systems and can be represented as interconnected networks of N elementary "components", their Subsystems; the detail of the disaggregation depends on the type and quality of the available data. The structural connectivity of the "model" of the System must correctly describe the interactions of each mass or energy flow with each sector of the society: since it is seldom the case that all of these fluxes are available in detail, some preliminary mass- and energy balances must be completed and constitute in fact a part of the initial assumptions. Exergy accounting converts the total amount of resources inflow into their equivalent exergetic form with the help of a table of "raw exergy data" available in the literature. The quantification of each flow on a homogeneous exergetic basis paves the way to the evaluation of the efficiency of each energy and mass transfer between the N sectors and makes it possible to quantify the irreversible losses and identify their sources. The advantage of the EEA, compared to a classical exergy accounting, is the inclusion in the system balance of the exergetic equivalents of three additional "Production Factors": human Labour, Capital and Environmental Remediation costs. EEA has an additional advantage: it allows for the calculation of the efficiency of the domestic sector (impossible to evaluate with any other energy- or exergy-based method) by considering the working hours as its product. As implied in the title, an application of the method was made to a model of the province of Siena (on a year 2000 database): the results show that the sectors of this Province have values of efficiency close to the Italian average, with the exception of the commercial and energy conversion sectors that are more efficient, in agreement with the rather peculiar socio-economic situation of the Province. The largest inefficiency is found to be in the transportation sector, which has an efficiency lower then 30% in EEA and lower than 10% in classical exergy accounting.  相似文献   

14.
In this study, an experimental investigation on the performance of a small-scale residential-size solar-driven adsorption (silica gel-water) cooling system that was constructed at Assiut University campus, Egypt is carried out. As Assiut area is considered as hot, arid climate, field tests for performance assessment of the system operation during the summer season are performed under different environmental operating conditions. The system consists of an evacuated tube with a reflective concentration parabolic surface solar-collector field with a total area of 36 m2, a silica gel-water adsorption chiller of 8 kW nominal cooling capacity, and hot and cold water thermal storage tanks of 1.8 and 1.2 m3 in volume, respectively. The results of summer season field test show that under daily solar insolation varying from 21 to 27 MJ/m2, the solar collectors employed in the system had high and almost constant thermal efficiency. The daily solar-collector efficiency during the period of system operation ranged from about 50% to 78%. The adsorption chiller performance shows that the chiller average daily coefficient of performance (COP) was 0.41 with the average cooling capacity of 4.4 kW when the cooling-water and chilled-water temperatures were about 31°C and 19°C, respectively. As the chiller cooling water is cooled by the cooling tower in the hot arid area, the cooling water is at a higher temperature than the design point of the chiller. Therefore, an experiment was carried out using the city water for cooling. The results show that an enhancement in the chiller COP by 40% and the chilling power by 17% has been achieved when the city water was 27.7°C.  相似文献   

15.
In order to decrease the heat rejection pressure of heat pump using pure working fluid, CO2 or R744, other natural component including hydrocarbons (R290, R600a, R600, R1270, R170, R601) and dimethyl ether (RE170) is added to CO2, respectively, and then six binary mixtures are achieved. By environmental and thermodynamic comparisons, R290 is selected to be the most appropriate component candidate to mix with CO2, and meanwhile to weaken the flammability and explosivity for pure R290. Then, the system performances of heat pump using mixture of CO2 and R290 were experimentally studied when R290 is added to CO2 with a small fraction, and compared with that of the pure CO2. The experimental test rig is designed and set up for the transcritical heat pump system. When the refrigerant charge is variable, the heating coefficient performance, optimum heat rejection pressure, compressor power, mass flow rate of refrigerant, and total heat coefficient of gas cooler were researched. The variation ratios of heating coefficient performance and heating capacity with deviation from the optimum refrigerant charge were also investigated. The optimum refrigerant charge of CO2/R290 is obtained and the research results show that the addition of R290 to CO2 can efficiently reduce the heat rejection pressure and improve the system performance. The results in the present work could provide useful guidelines for the design and operation of heat pump system using CO2-based mixture.  相似文献   

16.
In this work, the performance of a forced convection solar air heater was evaluated using using three packed bed absorber plate configurations and compared with flat absorber plate. The phase change material (paraffin wax) was packed in the pin-fin, trianglular and circular absorber plate configurations. The performance parameters such as, outlet air temperature, thermo-hydraulic efficiency, exergy efficiency and pressure drop were predicted and compared. The results showed that the packed bed absorber plate configurations using paraffin wax have higher outler air temperature in the range of 2–5°C with 3–40% higher thermo-hydraulic efficiency and 2–20% higher exergy efficiency when compared to flat absorber plate. However, the packed bed absorver plates have higher pressure drop when compared to flat absorber plate.  相似文献   

17.
Abstract

The method of exergy analysis is presented for a SOFC power plant involving external steam reforming and fed by methane and ethanol. The optimal operation parameters of the integrated SOFC plant are specified after minimizing the existing energy and exergy losses. A comparison of methane and ethanol as appropriate fuels for a SOFC-based power plant is provided in terms of exergetic efficiency assuming the minimum allowable (for carbon-free operation) reforming factors for both cases. Then, a parametric analysis provides guidelines for practical design. It is concluded that the exergy calculations pinpoint the losses accurately and that the exergy analysis gives a better insight into the system's process.  相似文献   

18.
The transcritical CO2 Rankine cycle with liquefied natural gas (LNG) as cold source is a promising power system to utilize mid- and low-temperature heat source. Most previous works focused on thermodynamic and thermoeconomic analysis or optimization for the system. In this article, an off-design performance analysis for the system is conducted. An off-design mathematical model for the system is established to examine the variation of system performance with the variations of heat source mass flow rate and temperature. A modified sliding pressure regulation control strategy, which regulates turbine inlet pressure to keep the temperature difference between heat source temperature and turbine inlet temperature constant, is applied to control the system when off-design conditions happen. The results show that when the mass flow rate or the temperature of heat source is less or lower than that of design condition, both the net power output of system and the system exergy efficiency decrease, whereas when they are more or higher than the values of design condition, the net power output of system increases but the system exergy efficiency still decreases. In addition, both CO2 turbine and NG turbine could almost keep the designed efficiency values under the applied control strategy.  相似文献   

19.
ABSTRACT

First and second law approaches have been used to analyze the performance of a humidified Brayton/Brayton power cycle. The energy efficiency and exergy destruction rates consistently improved when the combustion temperature was increased. Both performance indicators improved, reached an optimum, and then deteriorated when the topping cycle pressure ratio increased, while their sensitivity to the bottoming cycle pressure ratio depended on the humidification rate used at the bottoming cycle. Upon increasing the mass flowrate of air through the bottoming cycle, the energy efficiency of the power cycle increased linearly, while the irreversibility generation had a non-monotonic variation. In all cases, a higher degree of humidification always resulted in greater first and second law performances.  相似文献   

20.
The CO2 absorption capacities of potassium glycinate, potassium sarcosinate (choline, proline), mono-ethanolamine (MEA), and tri-ethanolamine were evaluated to find the optimal absorbent for separating CO2 from gaseous products by a CO2 purification process. The absorption loading, desorption efficiency, cost, and environmental tolerance were assessed to select the optimal absorbent. MEA was found to be the optimum absorbent for separating the CO2 and H2 mixture in gaseous product. The maximum absorption loading rate was 0.77 mol CO2 per mol MEA at temperature of 20°C and absorbent concentration of 2.5 mol/L, whereas desorption efficiency was 90% by heating for 3 h at 130°C. MEA was found to be an optimal absorbent for the purification process of CO2 during gaseous production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号