首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The possible mechanisms of interactions of electromagnetic fields (EMF) with biological systems are often discussed in bioelectromagnetics in light of thermal versus nonthermal mechanisms. This paper attempts to show the principle difference between the biophysical and engineering approaches to biological mechanisms of EMF initiated bioeffects. While biophysical approach is based on experimentally obtained data on biological responses to the applied EMF, the engineering approach strongly relies on specific absorption rate (SAR) value. With experimental data, comparing effects of low- and high-frequency electromagnetic fields, discussing modulation of radiofrequency (RF) signals, the author demonstrates the superiority of the nonthermal approach. Biological windows, resonance mechanism, and various reported biological effects of geomagnetic fields are also in favor of the nonthermal mechanisms. Finally, one potential nonthermal mechanism involving the role of calmodulin in cellular functions is shown in this paper.  相似文献   

2.
Management of many African game reserves is today often still an art based on experience and intuition, rather than a science. Decision-making is based on an informal integration of accumulated individual knowledge and keen field observations. Data are generally poorly captured and curated. Until fairly recently, denominators of biological parameters (such as the unit of land or unit of plant production used as measurement) have generally been treated as being homogenous. The patchiness of landscapes and the issue of ecological scaling were ignored, often because of a lack of appropriate technical tools. The ecological data available on the 49,000-ha Songimvelo Game Reserve (SGR) result from a number of discrete survey and monitoring projects undertaken by different researchers, with different objectives, at different spatial and temporal scales. A landscape ecological approach towards research and monitoring is appropriate for an area of the size and diversity of the SGR. A combination of a database approach and spatial representation was used to consolidate and integrate data across temporal and spatial scales. Herbivore spatial and temporal distribution patterns were explored across three spatial scales. An understanding was achieved of the importance of landscape patchiness in controlling resource availability for herbivores. This insight is important in guiding management and monitoring of the SGR by placing perceived patch overutilization in its proper landscape context. The landscape ecological approach bridges the traditional scale-independent view to a more contemporary scale-related understanding of ecosystem diversity and functioning.  相似文献   

3.
Many species that inhabit seasonally ponded wetlands also rely on surrounding upland habitats and nearby aquatic ecosystems for resources to support life stages and to maintain viable populations. Understanding biological connectivity among these habitats is critical to ensure that landscapes are protected at appropriate scales to conserve species and ecosystem function. Biological connectivity occurs across a range of spatial and temporal scales. For example, at annual time scales many organisms move between seasonal wetlands and adjacent terrestrial habitats as they undergo life‐stage transitions; at generational time scales, individuals may disperse among nearby wetlands; and at multigenerational scales, there can be gene flow across large portions of a species’ range. The scale of biological connectivity may also vary among species. Larger bodied or more vagile species can connect a matrix of seasonally ponded wetlands, streams, lakes, and surrounding terrestrial habitats on a seasonal or annual basis. Measuring biological connectivity at different spatial and temporal scales remains a challenge. Here we review environmental and biological factors that drive biological connectivity, discuss implications of biological connectivity for animal populations and ecosystem processes, and provide examples illustrating the range of spatial and temporal scales across which biological connectivity occurs in seasonal wetlands.  相似文献   

4.
This article summarizes the views of aquatic scientists who gathered to assess the ability of stream ecosystem theory to predict recovery from disturbance. Two views of disturbance were evident: a discrete removal of organisms vs an unusual deviation from normal. These were perceived as applying to different scales and/or objectives. Long-term information is required from both points of view to define recovery. Recovery also may be defined in different ways, but it is clear that recovery has both spatial and temporal components, and includes both physical and biological processes. Consensus was very strong that a major role (and challenge) for theory lies in the understanding of spatial aspects, temporal scales, coupling of physics and biology, and the interaction of these features in recovery processes. Some progress is evident in the articles of this volume, but among the topics identified as critical for further theoretical contributions were: homogeneous vs heterogeneous distribution of disturbance, local extent of disturbance relative to a regional context, critical vs noncritical patches (size and location) of disturbance at different spatial scales and temporal frequencies, delineation of reversible and nonreversible processes, and physical and biological constraints on the time frame for recovery. Such concepts need attention across different types of lotic ecosystems. Thus, there was strong consensus that a national monitoring system of representative lotic ecosystems within ecological regions be established. The purpose of this monitoring system would be to acquire long-term data on natural variability, to establish viable indicators of spatial and temporal aspects of recovery, and to develop and test emerging theoretical developments.  相似文献   

5.
The interest toward clinical application of magnetic and electromagnetic stimulation increases worldwide. Numerous publications discussed the possibility exogenous magnetic and electromagnetic fields to initiate effects on various biological processes, which are of critical importance for healing of different injuries and pathologies. Today, magnetic and electromagnetic fields are increasingly utilized for treatment of various musculoskeletal injuries and pathologies. For musculoskeletal injuries and post-surgical, post traumatic and chronic wounds, reduction of edema is a major therapeutic factor in the acceleration of pain and stress relief, and thus contribute to healing processes. Electromagnetic and magnetic fields appear to be unique in their safety during clinical use. The application of this new modality will be facilitated by searching for biophysical mechanisms of action as well as by establishing exact dosimetry of application. In that respect basic science research needs to be developed in parallel with clinical applications. Magnetotherapy provides a non-invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of injury. Unfortunately, there are many obstacles that magnetotherapy has to overcome—both from the mainstream medicine as well as from the manufacturers and distributors of magnetic devices. The physical principle of magnetism as well as the physiological bases for the use of magnetic field for tissue repair are subjects of this review.  相似文献   

6.
Creating a habitat classification and mapping system for marine and coastal ecosystems is a daunting challenge due to the complex array of habitats that shift on various spatial and temporal scales. To meet this challenge, several countries have, or are developing, national classification systems and mapping protocols for marine habitats. To be effectively applied by scientists and managers it is essential that classification systems be comprehensive and incorporate pertinent physical, geological, biological, and anthropogenic habitat characteristics. Current systems tend to provide over-simplified conceptual structures that do not capture biological habitat complexity, marginalize anthropogenic features, and remain largely untested at finer scales. We propose a multi-scale hierarchical framework with a particular focus on finer scale habitat classification levels and conceptual schematics to guide habitat studies and management decisions. A case study using published data is included to compare the proposed framework with existing schemes. The example demonstrates how the proposed framework’s inclusion of user-defined variables, a combined top-down and bottom-up approach, and multi-scale hierarchical organization can facilitate examination of marine habitats and inform management decisions.  相似文献   

7.
Natural and man-made magnetic and electromagnetic fields are important factors in the contemporary life. The paper discusses the role of environmental magnetic and electromagnetic fields in origin and evolution of life. A brief review of the characteristics of Earth magnetic field, Earth magnetosphere, and their role as a shield for cosmic radiation follows. The role of endogenous and exogenous magnetic fields is discussed in respect of the clarification of the potential hazard and benefit of electromagnetic fields. The second part of the paper discusses the mechanisms of detection and response to exogenous electromagnetic fields, as well as threshold versus window hypothesis for mechanisms of interactions. Finally, the necessity of accurate dosimetry at the target site and the importance of relevant research and clinical protocols in studying biological responses are pointed out.  相似文献   

8.
Habitats or environmental factors that convey spatial and temporal resistance and/or resilience to biotic communities that have been impacted by biophysical disturbances may be called refugia. Most refugia in rivers are characterized by extensive coupling of the main channel with adjacent streamside forests, floodplain features, and groundwater. These habitats operate at different spatial scales, from localized particles, to channel units such as pools and riffles, to reaches and longer sections, and at the basin level. A spatial hierarchy of different physical components of a drainage network is proposed to provide a context for different refugia. Examples of refugia operating at different spatial scales, such as pools, large woody debris, floodplains, below dams, and catchment basins are discussed. We hope that the geomorphic context proposed for examining refugia habitats will assist in the conservation of pristine areas and attributes of river systems and also allow a better understanding of rehabilitation needs in rivers that have been extensively altered.  相似文献   

9.
Space and Time Scales in Human-Landscape Systems   总被引:2,自引:0,他引:2  
Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.  相似文献   

10.
During the last three decades the interest toward clinical application of magnetic and electromagnetic stimulation increased worldwide. Numerous publications have discussed the possibility of exogenous magnetic fields to initiate beneficial effects on various biological processes, which are of critical importance for healing of different injuries and pathologies. Today, magnetic and electromagnetic fields are increasingly utilized for the treatment of numerous musculoskeletal injuries and pathologies. For example, selected magnetic fields were reported to be beneficial in the treatment of musculoskeletal injuries and post-surgical, post traumatic and chronic wounds, reduction of edema, in the acceleration of pain and stress relief, and thus contribute to healing processes. The application of this modality could be facilitated by establishing the exact dosimetry of application and by searching for biophysical mechanisms of action, as well. It should be remembered that “not all magnets are equal”, therefore the specific medical problem requires a proper diagnostics, a selection of the magnetic field to be applied and a design of the appropriate protocol for treatment. The paper advised that every study and report should carefully explain both the medical problem and the parameters of the applied magnetic field and cautions against generalized statements like “Magnetic field does/does not cause biological response”.  相似文献   

11.
The response of forest understory vegetation to trampling applied at different temporal and spatial scales was determined in a cliff-edge forest in Ontario, Canada. Three frequencies (0, 50, 500 passes per year) of short-term trampling (one year) were applied to plots previously undisturbed. Existing trails that had received three frequencies (approx. 100, 500, 25,000 passes per year) of long-term trampling (18 years) were also studied. Community composition, species richness, and individual species frequency were recorded in plots within 4 m and (or) 1 m of the patch centerline. The quantitative and qualitative form of plant response to increased trampling was compared for short-term and long-term treatments, both within 4 m and within 1 m of the path centerline, to judge the consistency of trampling effects at different temporal and spatial scales. As trampling frequency increased, community composition changed progressively, but consistently, in plots both within 4 m and 1 m of the path centerline. Species richness was less affected by trampling and only decreased within 1 m of the path centerline at the highest level of trampling (25,000 passes per season for 18 years). Effects of trampling on individual species frequency were much less consistent at different temporal and spatial scales of trampling. The scale-dependence results suggest that field workers and resource managers both should try explicitly to include and define multiple scale components when trying to ascertain the response of vegetation to human disturbance factors.  相似文献   

12.
Electromagnetic fields exposure assessment methodology is briefly presented. The basic problems defined for the practical use of electromagnetic fields measurements and numerical calculations carried out for workers exposure assessment in real occupational situations are discussed. The examples of data from real workplace are presented, focusing: spatial distribution of electromagnetic fields affecting worker’s body, complex characteristics of the frequency content, workers activities/moving in the workplace, field impedance, etc. The situation when the use of calculations is required is discussed. The basic requirements for workers exposure assessment protocols are presented. The possible range of the use of internal and external measures of exposure level is also discussed.  相似文献   

13.
Summary Despite of decades of successful worldwide use of magnetic/electromagnetic field therapy, the answer to the question of possible mechanisms of action is still lacking. Scientific reports of successful therapeutic use of magnetic/electromagnetic fields are worldwide; however, our understanding of the underlying mechanism is limited. This paper presents a new hypothesis that therapeutic benefit of magnetic fields might result from effects that originated on the level of important systems in human body. It is known now that the life is an electromagnetic event in aqueous medium. Therefore, an appropriate choice of magnetic and/or electromagnetic field may be expected to initiate systemic changes that result in efficacious effects distant from the point of application. Observations of this phenomenon have been reported in at least two forms: (1) neutralization of the pain experience distant to the point of magnetic field exposure; and, (2) various alterations of T-lymphocytes in response to pain and to magnetic fields. Extrapolating these observations to the level of blood-vessel system, one might hypothesize that a “healthy” cell does not respond as readily to the applied fields as do abnormal cells (which are in a disease or injury state).  相似文献   

14.
In spite of growing concern about the influence of magnetic fields on biological systems, the interaction between extremely low frequency magnetic field (ELF magnetic fields) and biological structures at the cellular level remains obscure. The aim of this study was to investigate if 50 Hz magnetic fields could have an effect on the neuronal excitability and firing responses. Under Current-Clamp condition, exposure to 50 Hz ELF magnetic fields at 2 mT or 0.8 mT intensities resulted in an increase in the peak amplitude of action potential and after hyperpolaization potential in a time dependent manner. Both magnetic field intensities decreased also the firing frequency and the duration of action potential. Taken together, these data suggest that 50 Hz ELF magnetic fields at 2 mT or 0.8 mT intensities may change the electrophysiological behavior of neuronal cells and underlying ion channel currents.  相似文献   

15.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

16.
Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.  相似文献   

17.
The environment in which biology exists has dramatically changed during the last decades. Life was formed during billions of years, exposed to, and shaped by the original physical forces such as gravitation, cosmic irradiation and the terrestrial magnetism. The existing organisms are created to function in harmony with these forces. However, in the late 19th century mankind introduced the use of electricity and during the very last decades, microwaves of the modern communication society spread around the world. Today one third of the world’s population is owner of the microwave-producing mobile phones. The question is: to what extent are living organisms affected by these ubiquitous radio frequency fields? Since 1988 our group has studied the effects upon the mammalian blood-brain barrier (BBB) by non-thermal radio frequency electromagnetic fields (RF-EMF). These have been revealed to cause significantly increased leakage of albumin through the BBB of exposed rats as compared to non-exposed animals—in a total series of about two thousand animals. One remarkable observation is the fact that the lowest energy levels give rise to the most pronounced albumin leakage. If mobile communication, even at extremely low energy levels, causes the users’ own albumin to leak out through the BBB, also other unwanted and toxic molecules in the blood, may leak into the brain tissue and concentrate in and damage the neurons and glial cells of the brain. In later studies we have shown that a 2-h exposure to GSM 915 MHz at non-thermal levels, gives rise to significant neuronal damage, seen 28 and 50 days after the exposure. In our continued research, the non-thermal effects (histology, memory functions) of long-term exposure for 13 months are studied as well as the effects of short term GSM 1,800 MHz upon gene expression. Most of our findings support that living organisms are affected by the non-thermal radio frequency fields. Studies from other laboratories in some cases find effects, while in other cases effects are not seen. Our conclusion is that all researchers involved in this field have the obligation to intensify this research in order to reduce, or avoid, the possible negative effects of the man made microwaves!  相似文献   

18.
The monetary valuation of ecosystem services has proved to be a powerful tool for influencing management decisions, as it can be used to quantify the relative importance of various ecosystem functions. However, these valuation methods are rarely implemented with adequate care; in particular, they do not consider spatial and temporal variations in the services offered and demanded. This paper examines the effect of heterogeneity on the valuation of cultural services offered by the Doñana natural protected area in Spain. We apply the zonal travel cost method at various spatial scales, and the individual travel cost method at various temporal scales. We conclude that economic valuation techniques must account for spatial and temporal heterogeneity if they are to provide accurate and realistic information.  相似文献   

19.
Occupational exposure to radiofrequency (RF) and static magnetic fields at magnetic resonance imaging (MRI) suites is of continuing concern to personnel who routinely work in this environment. Questions regarding the levels of occupational RF and static field exposure have increased with the increasing demand for anesthetics to be administered in this environment. The present study was thus designed towards addressing the above-mentioned problem by gaining information regarding exposure levels of clinical personnel at MRI units in South Africa. Three 1.5 MRI units in Bloemfontein, South Africa were utilized to evaluate the exposure of clinical personnel to the electromagnetic fields present in the MRI environment over a period of time and during different clinical MRI procedures. Three rounds of measurements of RF fields in the MRI environment were done. All the three measurement rounds were focused on the low frequencies, 5 Hz–32 kHz, as well as on the high frequencies, 300 kHz–40 GHz. First round measurements were done to establish the background of the RF fields in and around the magnet room during an MRI examination. Second round RF field measurements were done at a specific location, 1 m away from the bore on the right-hand side of the bed, in the MRI room. The third round measurements were of the same format as the second round, but the specific location was against the magnet bore. Two pieces of Narda Safety Test Solution instruments, the EFA-300 and EMR-300, were used to measure the electromagnetic and magnetic exposure fields generated from the MRI scanners. Results of the measurements indicate that the electromagnetic fields measured during different clinical procedures do not exceed the International Commission on Non-Ionizing Radiation Protection (2000) guidelines in these units. Results from round two and three showed that the RF and gradient exposure 1 m and up against the bore entrance does not exceed these guidelines (rms average over 6 min). Ongoing new developments in MRI scanning create the need for continuously monitoring exposure of patients and workers to the EMF fields in the MRI environment.  相似文献   

20.
Bioindicators are often more sensitive indicators of both biodiversity and environmental change than abiotic pollution parameters. The responses of selected plants and animals to anthropogenic insults can be used to assess environmental responses at a variety of spatial and temporal scales. This study maps the response of key reptile, mammal, bird and plant species to airborne contaminants around a large mine and mineral processing operation at Olympic Dam in arid Australia. The responses of different bioindicators should ideally be integrated in order to comprehend overall trends in biological integrity adjacent to pollution sources. Assimilation of different bioindicator responses allows greater precision and geographic coverage of the monitored region and reduces potential distortion from unrelated biological or monitoring responses of individual indicator groups. A single, integrated measure of ecosystem health that overlays the responses of otherwise incompatible datasets, is also of more value to industrial operators and environmental regulators than several disparate responses. Biohyets, which are the contours of bioindicator index values derived from multiple biotic measurements, are here used to map variability in ecosystem health and to identify regions, response variables and disturbance parameters for more rigorous analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号