首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

2.
Forest fires constitute one of the most serious environmental problems in several forested regions of India. In the Indian sub-continent, relatively few studies have focused on the assessment of biophysical and anthropogenic controls of forest fires at a landscape scale and the spatial aspects of these relationships. In this study, we used fire count data sets from satellite remote sensing data covering 78 districts over four different states of the Deccan Plateau, India, for assessing the underlying causes of fires. Spatial data for explanatory variables of fires pertaining to topography, vegetation, climate, anthropogenic and accessibility factors have been gathered corresponding with fire presence/absence. A logistic regression model was used to estimate the probability of the presence of fires as a function of the explanatory variables. Results for fire area estimates suggested that, of the total fires covering 47,043km(2) that occurred during the year 2000 for the entire Indian region, 29.0% occurred in the Deccan Plateau, with Andhra Pradesh having 13.5%, Karnataka 14.7%, Kerala 0.1%, and Tamilnadu 1.15%. Results from the logistic regression suggest that the strongest influences on the fire occurrences were the amount of forest area, biomass densities, rural population density (PD), average precipitation of the warmest quarter, elevation (ELE) and mean annual temperature (MAT). Among these variables, biomass density (BD) and average precipitation of the warmest quarter had the highest significance, followed by others. These results on the best predictors of forest fires can be used both as a strategic planning tool to address broad scale fire risk concerns, and also as a tactical guide to help forest managers to design fire mitigation measures at the district level.  相似文献   

3.
Gölcük Nature Park (GNP) is an area protected by law in Turkey. It is an important nature park with rich flora, fauna, geomorphologic forms, landscape features, and recreational potential in the region. However, GNP does not have a recreation management plan. The purpose of this study was to determine the actual natural, cultural, and visual resources of GNP, determine the most suitable recreational sites with multiple factors, evaluate the demands and tendencies of visitors, and suggest recreational activities and facilities for the most suitable sites of GNP. However, it was also conceived as leading to a recreational plan and design of GNP in the future and identifying the entire appropriate and current data of GNP with the creation of various maps. This study used multifactor analysis to determine the most suitable recreation sites of GNP. Used recreation factors were established including degree of slope, proximity to water resources, accessibility, elevation, vegetation, soil, climate, aspect, current cultural facilities, visual values, and some limiting factors in accordance with the characteristics of GNP. Weighting and suitability values of factors were determined by 30 local expert surveys. All obtained data were evaluated and integrated in the Geographical Information Systems base. Obtained maps were overlapped. Thus, recreational suitability zones map were created manually. However, the demands and behaviours from visitor surveys in GNP were focused on the most suitable recreation sites of the park. Finally, 10% of GNP was identified as the most suitable sites for recreational use. Various recreational facilities and activities (including picnicking, sports facilities and playgrounds, camping sites, walking paths, food and local outlets, etc.) were recommended for nine of the most suitable areas on the proposed recreational map.  相似文献   

4.
Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.  相似文献   

5.
We investigated the effects of human trampling on boreal forest understory vegetation on, and off paths from suburban forest edges towards the interiors and on the likelihood of trampling-aided dispersal into the forests for three years by carrying out a trampling experiment. We showed that the vegetation was highly sensitive to trampling. Even low levels of trampling considerably decreased covers of the most abundant species on the paths. Cover decreased between 10 and 30% on paths which had been trampled 35 times, and at least by 50% on those trampled 70–270 times. On-path vegetation cover decreased similarly at forest edges and in the interiors. However, some open habitat plant species that occurred outside the forest patches and at forest edges dispersed into the forests, possibly through the action of trampling. A higher cover percentage of an open habitat species at the forest edge line increased its probability to disperse into the forest interior. The vegetation community on, next to, and away from lightly trampled paths remained the same throughout the trampling experiment. For heavily trampled paths, the community changed drastically on the paths, but stayed relatively similar next to and away from the paths. As boreal vegetation is highly sensitive to the effects of trampling, overall ease of access throughout the forest floor should be restricted to avoid the excessive creation of spontaneous paths. To minimize the effects of trampling, recreational use could be guided to the maintained path network in heavily used areas.  相似文献   

6.
Characterized by expensive housing, high socioeconomic status, and topographic relief, Upper Sonoran Lifestyle communities are found primarily along the Wildland-Urban Interface (WUI) in the Phoenix, Arizona metro area. Communities like these sprawl into the wildlands in the United States Southwest, creating a distinct urban fringe. This article, through locational comparison, introduces and evaluates a new field assessment tool for monitoring anthropogenic impact on soil–vegetation interactions along the well-maintained multi-use recreational trails in Upper Sonoran Lifestyle region. Comparing data from randomly selected transects along other multi-use trails with data from a control site revealed three key indicators of anthropogenic disturbances on soil–vegetation interactions: soil disturbance, vegetation disturbance, and vegetation density. Soil and vegetation disturbance displayed an average distance decay exponent factor of −0.60, while vegetation density displayed a reverse decay average of 0.60. Other important indicators of disturbance included vegetation type, biological soil crusts, and soil bulk density. The predictive ability of this new field tool enhances its applicability, offering a powerful rapid ecological assessment method for monitoring long-term anthropogenic impact in the Upper Sonoran Lifestyle, and other sprawling cities along the WUI.  相似文献   

7.
Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.  相似文献   

8.
基于矿区废弃地植被恢复的视角,在分析矿区废弃地生态系统脆弱性和森林生态效益价值计量理论与方法的基础上,探讨了森林生态效益计量问题。结合矿区废弃地的相关特点,对矿区废弃地植被恢复中森林生态效益计量的具体指标进行了筛选。通过研究,选出涵养水源、净化大气、生物多样性保护、保持水土、游憩效益5个具体效益价值计量指标,为今后矿区废弃地植被恢复中森林生态效益价值的计量研究提供借鉴。  相似文献   

9.
Experiments with controlled levels of recreational camping were conducted on previously undisturbed sites in two different plant communities in the subalpine zone of the Wind River Mountains, Wyoming, USA. The plant communities were coniferous forest with understory dominated by the low shrub Vaccinium scoparium and a riparian meadow of intermixed grasses and forbs, of which Deschampsia cespitosa was most abundant. Sites were camped on at intensities of either one or four nights per year, for either one (acute disturbance) or three consecutive years (chronic disturbance). Recovery was followed for three years on sites camped on for one year and for one year on sites camped on for three years. Reductions in vegetation cover and vegetation height were much more pronounced on sites in the forest than on sites in the meadow. In both plant communities, increases in vegetation impact were not proportional to increases in either years of camping or nights per year of camping. Close to the center of campsites, near-maximum levels of impact occurred after the first year of camping on forested sites and after the second year on meadow sites. Meadow sites recovered completely within a year, at the camping intensities employed in the experiments. Forest sites, even those camped on for just one night, did not recover completely within three years. Differences between acute and chronic disturbance were not pronounced.  相似文献   

10.
Recreational activities can have major impacts on vegetation and wildlife in frequently visited forests. We assessed forest perception and knowledge (state, functions, and species diversity) among hikers and mountain bikers in a frequently visited, seminatural suburban recreation forest (Muttenz) and in a more distantly situated, naturally grown excursion forest (Wasserfallen) in northwestern Switzerland. In all, 239 hikers and 126 mountain bikers were interviewed. Mountain bikers in both forests and hikers in the more intensely used recreation forest at Muttenz assessed the state of the forest less optimistically and showed a higher awareness of the negative impact of recreational activities on the flora and fauna than hikers at Wasserfallen. Furthermore, mountain bikers seemed aware of the social conflicts caused by their activity, since they appreciated neutral or positive encounters with other forest visitors. In contrast, 57% of hikers at Muttenz reported on negative experiences with other forest visitors, particularly with mountain bikers. In general, the interviewees ecological and biological forest knowledge (forest type and function, species diversity) was rather high. A large proportion was aware of the pros and cons of different forest conditions for plants and animals, and could name or recognize at least some plant and/or animal species typical for the visited forest. The forest knowledge was neither influenced by the type of recreational activity carried out nor by any aspect of forest visit behavior (frequency and duration of forest visits, means of transportation and travel distance to forest). However, the interviewees forest knowledge was influenced by their age and educational level.  相似文献   

11.
Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson’s diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon’s diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation should now be included in urban biotope classifications.  相似文献   

12.
Southern California desert public lands receive especially high levels of off-highway recreation due to large population centers nearby and popular riding environments such as sand dunes. Controversy has developed over the flat-tailed horned lizard (Phrynosoma mcallii), previously a candidate for listing under the Endangered Species Act. Some evidence suggests lower lizard abundance in areas of higher recreational use than in areas with low or no use. We designed a manipulative experiment to ensure maximum inference in evaluating the direct impact of recreational riding of off-highway vehicles on lizards. Thirty-six lizards, in situ, were treated with an off-highway vehicle treatment during hibernation season in three treatment groups: high impact, low impact, and control. Treatments consisted of timed riding by off-highway vehicles. In all treatment groups survival was 100%, despite hibernation of lizards at very shallow depths. Consequently, indirect effects of off-highway vehicles deserve increased attention. The relative importance of direct versus indirect (i.e., degradation of lizard habitat) impacts caused by off-highway vehicles remains unknown. These indirect effects may include the altering of vegetation, substrate, and prey. We recommend that a manipulative approach be adopted to investigate these possibilities.  相似文献   

13.
The Appalachian region in the eastern United Sates is home to the Earth's most extensive temperate deciduous forests, but coal mining has caused forest loss and fragmentation. More than 6000 km in Appalachia have been mined for coal since 1980 under the Surface Mining Control and Reclamation Act (SMCRA). We assessed Appalachian areas mined under SMCRA for forest restoration potentials. Our objectives were to characterize soils and vegetation, to compare soil properties with those of pre-SMCRA mined lands that were reforested successfully, and to determine the effects of site age on measured properties. Soils were sampled and dominant vegetation characterized at up to 10 points on each of 25 post-SMCRA mines. Herbaceous species were dominant on 56%, native trees on 24%, and invasive exotics on 16% of assessed areas. Mean values for soil pH (5.8), electrical conductivity (0.07 dS m(-1)), base saturation (89%), and coarse fragment content (50% by mass) were not significantly different from measured levels on the pre-SMCRA forested sites, but silt+clay soil fraction (61%) was higher, bicarbonate-extractable P (4 mg kg(-1)) was lower, and bulk density (1.20 g cm(-1)) was more variable and often unfavorable. Pedogenic N and bicarbonate-extractable P in surface soils increased with site age and with the presence of weathered rocks among coarse fragments. Our results indicate a potential for many of these soils to support productive forest vegetation if replanted and if cultural practices, including temporary control of existing vegetation, soil density mitigation, and fertilization, are applied to mitigate limitations and aid forest tree reestablishment and growth.  相似文献   

14.
Abstract: The increase of coverage of forest/vegetation is imperative to improve the environment in dry‐land areas of China, especially for protecting soil against serious erosion and sandstorms. However, inherent severe water shortages, drought stresses, and increasing water use competition greatly restrict the reforestation. Notably, the water‐yield reduction after afforestation generates intense debate about the correct approach to afforestation and forest management in dry‐land areas. However, most studies on water‐yield reduction of forests have been at catchment scales, and there are few studies of the response of total evapotranspiration (ET) and its partitioning to vegetation structure change. This motivates us to learn the linkage between hydrological processes and vegetation structure in slope ecosystems. Therefore, an ecohydrological study was carried out by measuring the individual items of water balance on sloping plots covered by different vegetation types in the semiarid Liupan Mountains of northwest China. The ratio of precipitation consumed as ET was about 60% for grassland, 93% for shrubs, and >95% for forestland. Thus, the water yield was very low, site‐specific, and sensitive to vegetation change. Conversion of grassland to forest decreased the annual water yield from slope by 50‐100 mm. In certain periods, the plantations at lower slopes even consumed the runon from upper slopes. Reducing the density of forests and shrubs by thinning was not an efficient approach to minimize water use. Leaf area index was a better indicator than plant density to relate ET to vegetation structure and to evaluate the soil water carrying capacity for vegetation (i.e., the maximum amount of vegetation that can be supported by the available soil water for an extended time). Selecting proper vegetation types and plant species, based on site soil water condition, may be more effective than the forest density regulation to minimize water‐yield reduction by vegetation coverage increase and notably by reforestation. Finally, the focuses in future research to improve the forest‐water relations in dry‐land areas are recommended as follows: vegetation growth dynamics driven by environment especially water conditions, coupling of ecological and hydrological processes, further development of distributed ecohydrological models, quantitative relation of eco‐water quota of ecosystems with vegetation structures, multi‐scaled evaluation of soil water carrying capacity for vegetation, and the development of widely applicable decision support tools.  相似文献   

15.
16.
The present study examined multiple relationships within and between two sets of variables — visual properties and affective appraisals — in night-time neighbourhood experience. Twenty-eight participants rated twenty night-time neighbourhood scenes on 12 visual property variables and six affective appraisal variables. Canonical correlation revealed relationships between evaluative and natural/open dimensions, arousal and disorder dimensions, and between behavioural active/safe and well-lit/visible dimensions.  相似文献   

17.
Suburban forest fragments often experience heavy recreational and waste disposal use, with considerable damage to the vegetation. To suggest strategies for conservation of the forest flora, spatial distributions of human impact were described in 40 fragmentary stands in northern New Castle County, Delaware. The distribution of human impact showed a significant bias to the forest edge, with 95% of localized damage occurring in the first 82 m. Forms of impact related to lawn maintenance fell significantly closer to the edge than impacts related to recreation and showed the strongest edge orientation. Edge distances of campsites, vandalized trees, and firewood gathering were negatively correlated with distance to the nearest graded road, indicating the importance of road access. Several forms of impact were also clustered near footpaths, although distance to paths was independent of edge distance in all cases. In terms of penetration of the forest and severity of damage, human impact greatly exceeds natural edge effects reported for this community. These findings suggest that damage may be minimized by limiting road access and avoiding the creation of small forest fragments.  相似文献   

18.
Variation in root density along stream banks   总被引:1,自引:0,他引:1  
While it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled. The riparian buffers varied from short turfgrass to mature riparian forests, representing a range of vegetation types. Root length density (RLD) with depth and aboveground vegetation density were measured. The sites were divided into forested and herbaceous groups and differences in root density were evaluated. At the herbaceous sites, very fine roots (diameter < 0.5 mm) were most common and more than 75% of all roots were concentrated in the upper 30 cm of the stream bank. Under forested vegetation, fine roots (0.5 mm < diameter < 2.0 mm) were more common throughout the bank profile, with 55% of all roots in the top 30 cm. In the top 30 cm of the bank, herbaceous sites had significantly greater overall RLD than forested sites (alpha = 0.01). While there were no significant differences in total RLD below 30 cm, forested sites had significantly greater concentrations of fine roots, as compared with herbaceous sites (alpha = 0.01). As research has shown that erosion resistance has a direct relationship with fine root density, forested vegetation may provide better protection against stream bank erosion.  相似文献   

19.
Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.  相似文献   

20.
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100–1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号