首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nipped in the Bud: Why Regional Scale Adaptive Management Is Not Blooming   总被引:6,自引:2,他引:4  
Adaptive management is an approach to managing natural resources that emphasizes learning from the implementation of policies and strategies. Adaptive management appears to offer a solution to the management gridlock caused by increasing complexity and uncertainty. The concept of adaptive management has been embraced by natural resource managers worldwide, but there are relatively few published examples of adaptive management in use. In this article, we explore two watershed management projects in southeastern Australia to better understand the potential of adaptive management in regional scale programs through qualitative, case study–based investigation. The program logic of one case implies the use of passive adaptive management, whereas the second case claims to be based on active adaptive management. Data were created using participant observation, semistructured interviews with individuals and groups, and document review. Using thematic content and metaphor analysis to explore the case data, we found that each case was successful as an implementation project. However, the use of both passive and active adaptive management was constrained by deeply entrenched social norms and institutional frameworks. We identified seven “imperatives” that guided the behavior of project stakeholders, and that have consequences for the use of adaptive management. Reference to recent evaluations of the Adaptive Management Areas of the Pacific Northwest of the United States suggests that some of these imperatives and their consequences have broad applicability. The implications of our findings are discussed, and suggestions for improving the outcomes of regional scale adaptive management are provided.  相似文献   

2.
3.
Planners and water managers seek to be adaptive to handle uncertainty through the use of planning approaches. In this paper, we study what type of adaptiveness is proposed and how this may be operationalized in planning approaches to adequately handle different uncertainties. We took a comparative case study approach to study two planning approaches: the water diplomacy framework (WDF) and adaptive delta management (ADM). We found that the approaches differ in their conceptualization of uncertainty and show that different types of adaptiveness are used in the approaches. While WDF builds on collaborative adaptive management as a set of ongoing adjustments and continuous learning to handle uncertainty, ADM deliberately attempts to anticipate future adaptations through a set of tools which allows for seizing opportunities and avoiding lock-in and lock-out mechanisms. We conclude that neither of the approaches is fully able to account for different uncertainties. Both approaches may benefit from specific insights in what uncertainty and adaptiveness entail for the development of water management plans.  相似文献   

4.
Within the field of natural-resources management, the application of adaptive management is appropriate for complex problems high in uncertainty. Adaptive management is becoming an increasingly popular management-decision tool within the scientific community and has developed into two primary schools of thought: the Resilience-Experimentalist School (with high emphasis on stakeholder involvement, resilience, and highly complex models) and the Decision-Theoretic School (which results in relatively simple models through emphasizing stakeholder involvement for identifying management objectives). Because of these differences, adaptive management plans implemented under each of these schools may yield varying levels of success. We evaluated peer-reviewed literature focused on incorporation of adaptive management to identify components of successful adaptive management plans. Our evaluation included adaptive management elements such as stakeholder involvement, definitions of management objectives and actions, use and complexity of predictive models, and the sequence in which these elements were applied. We also defined a scale of degrees of success to make comparisons between the two adaptive management schools of thought. Our results include the relationship between the adaptive management process documented in the reviewed literature and our defined continuum of successful outcomes. Our data suggest an increase in the number of published articles with substantive discussion of adaptive management from 2000 to 2009 at a mean rate of annual change of 0.92 (r2 = 0.56). Additionally, our examination of data for temporal patterns related to each school resulted in an increase in acknowledgement of the Decision-Theoretic School of thought at a mean annual rate of change of 0.02 (r2 = 0.6679) and a stable acknowledgement for the Resilience-Experimentalist School of thought (r2 = 0.0042; slope = 0.0013). Identifying the elements of successful adaptive management will be advantageous to natural-resources managers considering adaptive management as a decision tool.  相似文献   

5.
In 2000, the Global Water Partnership (GWP) as the main advocate of the concept of Integrated Water Resources Management (IWRM), proposed a definition that is now the reference, despite the ambiguity that persists in its interpretation. At the 2002 World Summit on Sustainable Development, the State representatives committed themselves to launch "plans for integrated water resources management and water efficiency by 2005". Some states immediately honoured this commitment by adopting new national water policies inspired by IWRM principles. Do these implementation plans respond to all the challenges of the IWRM? Or have these states simply reorganized their water resource policies to give an impression of conforming to the framework? In response to these questions, we present a history of IWRM and its conflicting interpretations followed by a case study of reforms enacted in Burkina Faso, to highlight some problems which are inherent to IWRM and how IWRM was transposed on a national scale.  相似文献   

6.
Sound ecosystem management meshes socioeconomic attitudes and values with sustainable natural resource practices. Adaptive management is a model for guiding natural resource managers in this process. Ecosystems and the societies that use them are continually evolving. Therefore, managers must be flexible and adaptable in the face of uncertainty and lack of knowledge. To couple good science to management, it is important to develop goals, models, and hypotheses that allow us to systematically learn as we manage. Goals and models guide the development and implementation of management practices. The need to evaluate models and test hypotheses mandates monitoring, which feeds into a continuous cycle of goal and model reformulation. This paper reviews the process of adaptive management and describes how it is being applied to oak/pine savanna restoration at Necedah National Wildlife Refuge as an illustration. Our aim is to help managers design their own adaptive management models for successful ecosystem management.  相似文献   

7.
This study proposes an improved integrated water resource management (IWRM), in which water conservation was analyzed for the entire water use process. A multi-objective optimization method was applied to optimize the IWRM, which investigated the reduction of freshwater consumption and the total water supply cost. Customer's preference for saving water and an end use analysis (EUA) was applied in the water conservation analysis. Taking Tianjin as the study area, a reduction in customer's economic pressure (EP) was utilized to evaluate the degree of the customer's preference for saving water. The results revealed that agriculture had a greater preference for saving water than other sectors, where as the public had the weakest motivation for saving water. Improving the transportation method could contribute 62.1% of the total water savings in the agriculture sector. The optimization of the IWRM demonstrated that the local freshwater savings would be 21.5%, and the total cost for water supplies would decrease by 13%. However, a government subsidy of 87.5 million Yuan would be needed. Additionally, by analyzing the change in the amount of water savings affected by water price, the appropriate water price increase range was suggested to be 1.5–1.7 times the original price.  相似文献   

8.
The adaptive management leitmotiv of “learning to manage and managing to learn” sets out an attractive agenda for dealing with the overwhelming complexity of environmental phenomena that humans have problematized. To ensure that this rallying cry translates into effective action, it is important to give consideration to structures and procedures for facilitating the efforts of those willing or able to respond to the adaptive management call. To date, calls to establish the right organization to coordinate multiagency responses have tended to emphasize the noun, or bounded-entity, sense of the word organization. We believe that this is at the expense of its other, verb or process, connotation. In this paper, rather than searching for the perfect organization structure that mandates mutual trust and collective action shaped by all relevant parties' perspectives and possible contributions, we direct attention towards the process of nurturing integrated adaptive responses among individuals who have diverse organizational allegiances. By shifting the balance towards the process connotation of the right organization, we hope that a new mindscape can be discerned for those interested in putting adaptive management principles into practice. We seek to conjure up an image of this mindscape through the phrase “learning to network and networking to learn,” and set out to strengthen this by demonstrating how adaptive response networks can arise from the mutually defining relationship between stakeholders and issues. This is demonstrated through a local response to the United Kingdom's National Air Quality Strategy.  相似文献   

9.
Adaptive management, an established method in natural resource and ecosystem management, has not been widely applied to landscape planning due to the lack of an operational method that addresses the role of uncertainty and standardized monitoring protocols and methods. A review of adaptive management literature and practices reveals several key concepts and principles for adaptive planning: (1) management actions are best understood and practiced as experiments; (2) several plans/experiments can be implemented simultaneously; (3) monitoring of management actions are key; and (4) adaptive management can be understood as ‘learning by doing’. The paper identifies various uncertainties in landscape planning as the major obstacles for the adoption of an adaptive approach. To address the uncertainty in landscape planning, an adaptive planning method is proposed where monitoring plays an integral role to reduce uncertainty. The proposed method is then applied to a conceptual test in water resource planning addressing abiotic-biotic-cultural resources. To operationalize adaptive planning, it is argued that professionals, stakeholders and researchers need to function in a genuinely transdisciplinary mode where all contribute to, and benefit from, decision making and the continuous generation of new knowledge.  相似文献   

10.
This article examines what is generally considered to be an unattainable goal in the western United States: integrated water resources management (IWRM). Specifically, we examine an organization that is quite unique in the West, Montana’s Clark Fork River Basin Task Force (Task Force), and we analyze its activities since its formation in 2001 to answer the question: are the activities and contributions of the Task Force working to promote a more strongly integrated approach to water resources management in Montana? After reviewing the concepts underlying IWRM, some of the issues that have been identified for achieving IWRM in the West, and the Montana system of water right allocation and issues it faces, we adapt Mitchell’s IWRM framework and apply it to the analysis of the Task Force’s activities in the context of IWRM. In evaluating the physical, interaction, and protocol/planning/policy components of IWRM, we find that the Task Force has been contributing to the evolution of Montana’s water resources management towards this framework, though several factors will likely continue to prevent its complete realization. The Task Force has been successful in this regard because of its unique nature and charge, and because of the authority and power given it by successive Montana legislatures. Also critical to the success of the organization is its ability to help translate into policy the outcomes of legal and quasi-judicial decisions that have impacted the state’s water resources management agency.  相似文献   

11.
Monitoring in adaptive co-management: Toward a learning based approach   总被引:3,自引:0,他引:3  
The recognition of complexity and uncertainty in natural resource management has lead to the development of a wealth of conceptual frameworks aimed at integrated assessment and complex systems monitoring. Relatively less attention has however been given to methodological approaches that might facilitate learning as part of the monitoring process. This paper reviews the monitoring literature relevant to adaptive co-management, with a focus on the synergies between existing monitoring frameworks, collaborative monitoring approaches and social learning. The paper discusses the role of monitoring in environmental management in general, and the challenges posed by scale and complexity when monitoring in adaptive co-management. Existing conceptual frameworks for monitoring relevant to adaptive co-management are reviewed, as are lessons from experiences with collaborative monitoring. The paper concludes by offering a methodological approach to monitoring that actively seeks to engender reflexive learning as a means to deal with uncertainty in natural resource management.  相似文献   

12.
Applications of Turbidity Monitoring to Forest Management in California   总被引:1,自引:1,他引:0  
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.  相似文献   

13.
Abstract:  Adaptive management is often proposed as the most effective way to manage complex watersheds. However, our experience suggests that social and institutional factors constrain the search for, and integration of, the genuine learning that defines adaptive management. Drawing on our work as social scientists, and on a guided panel discussion at a recent AWRA conference, we suggest that watershed‐scale adaptive management must be recognized as a radical departure from established ways of managing natural resources if it is to achieve its promise. Successful implementation will require new ways of thinking about management, new organizational structures and new implementation processes and tools. Adaptive management encourages scrutiny of prevailing social and organizational norms and this is unlikely to occur without a change in the culture of natural resource management and research. Planners and managers require educational, administrative, and political support as they seek to understand and implement adaptive management. Learning and reflection must be valued and rewarded, and fora established where learning through adaptive management can be shared and explored. The creation of new institutions, including educational curricula, organizational policies and practices, and professional norms and beliefs, will require support from within bureaucracies and from politicians. For adaptive management to be effective researchers and managers alike must work together at the watershed‐scale to bridge the gaps between theory and practice, and between social and technical understandings of watersheds and the people who occupy and use them.  相似文献   

14.
Integrated catchment management (ICM), as promoted by recent legislation such as the European Water Framework Directive, presents difficult challenges to planners and decision-makers. To support decision-making in the face of high complexity and uncertainty, tools are required that can integrate the evidence base required to evaluate alternative management scenarios and promote communication and social learning. In this paper we present a pragmatic approach for developing an integrated decision-support tool, where the available sources of information are very diverse and a tight model coupling is not possible. In the first instance, a loosely coupled model is developed which includes numerical sub-models and knowledge-based sub-models. However, such a model is not easy for decision-makers and stakeholders to operate without modelling skills. Therefore, we derive from it a meta-model based on a Bayesian Network approach which is a decision-support tool tailored to the needs of the decision-makers and is fast and easy to operate. The meta-model can be derived at different levels of detail and complexity according to the requirements of the decision-makers. In our case, the meta-model was designed for high-level decision-makers to explore conflicts and synergies between management actions at the catchment scale. As prediction uncertainties are propagated and explicitly represented in the model outcomes, important knowledge gaps can be identified and an evidence base for robust decision-making is provided. The framework seeks to promote the development of modelling tools that can support ICM both by providing an integrated scientific evidence base and by facilitating communication and learning processes.  相似文献   

15.
The article states the case for greatly enhanced reliance on desalination in the provision of freshwater. It argues that the concept of integrated water resource management (IWRM), should be expanded to routinely include desalination, and that sea water and brackish water should be listed among available sources of freshwater. In recent years, the price per m3 of freshwater obtained from desalination has steadily declined, and is now within competitive range of conventional sources, especially as extracting water from surface sources (rivers, lakes) is becoming increasingly expensive as well as ecologically harmful, and groundwater in many locations is saline or depleted. With the expectation that by 2020, five billion people will reside in megacities, today's conventional water resources are likely to become insufficient. As many of these megacities are located near ocean coasts, sea water seems a logical solution.  相似文献   

16.
The loss of biodiversity is a mounting concern, but despite numerous attempts there are few large scale conservation efforts that have proven successful in reversing current declines. Given the challenge of biodiversity conservation, there is a need to develop strategic conservation plans that address species declines even with the inherent uncertainty in managing multiple species in complex environments. In 2002, the State Wildlife Grant program was initiated to fulfill this need, and while not explicitly outlined by Congress follows the fundamental premise of adaptive management, 'Learning by doing'. When action is necessary, but basic biological information and an understanding of appropriate management strategies are lacking, adaptive management enables managers to be proactive in spite of uncertainty. However, regardless of the strengths of adaptive management, the development of an effective adaptive management framework is challenging. In a review of 53 State Wildlife Action Plans, I found a keen awareness by planners that adaptive management was an effective method for addressing biodiversity conservation, but the development and incorporation of explicit adaptive management approaches within each plan remained elusive. Only ~25% of the plans included a framework for how adaptive management would be implemented at the project level within their state. There was, however, considerable support across plans for further development and implementation of adaptive management. By furthering the incorporation of adaptive management principles in conservation plans and explicitly outlining the decision making process, states will be poised to meet the pending challenges to biodiversity conservation.  相似文献   

17.
Integrated Water Resource Management (IWRM) emerged as a popular concept in the water sector in the 20th century. From a highly techno-centric approach in the past, it has taken a new turn embracing Habermasian communicative rationality as a place-based nexus for multiple actors to consensually and communicatively integrate decisions in a hydrological unit. The 'how to integrate' approach had remarkable appeal worldwide in promoting authentic participation of all stakeholders. However, critics argue that the domain of water resource management is a political process of contestation and negotiation; the emphasis is on complexities, contextuality, power dynamics and the importance of analysing real world situations. They demonstrate 'how integration cannot be achieved' given the power dynamics in social interactions. These apparently contradictory discourses draw on different theoretical paradigms and polarise the discourse on IWRM, without offering constructive alternatives. To this end, this paper offers an option to complement this polarised discourse by examining 'how integration actually does take place' in a strategic context thereby facilitating consensual decisions to integrate water management for a sustainable future.  相似文献   

18.
Abstract: Growing populations, limited resources, and sustained drought are placing increased pressure on already over‐allocated water supplies in the western United States, prompting some water managers to seek out and utilize new forms of climate data in their planning efforts. One source of information that is now being considered by water resource management is extended hydrologic records from tree‐ring data. Scientists with the Western Water Assessment (WWA) have been providing reconstructions of streamflow (i.e., paleoclimate data) to water managers in Colorado and other western states (Arizona, New Mexico, and Wyoming), and presenting technical workshops explaining the applications of tree‐ring data for water management for the past eight years. Little is known, however, about what has resulted from these engagements between scientists and water managers. Using in‐depth interviews and a survey questionnaire, we attempt to address this lack of information by examining the outcomes of the interactions between WWA scientists and western water managers to better understand how paleoclimate data has been translated to water resource management. This assessment includes an analysis of what prompts water managers to seek out tree‐ring data, how paleoclimate data are utilized by water managers in both quantitative and qualitative ways, and how tree‐ring data are interpreted in the context of organization mandates and histories. We situate this study within a framework that examines the coproduction of science and policy, where scientists and resource managers collectively define and examine research and planning needs, the activities of which are embedded within wider social and political contexts. These findings have broader applications for understanding science‐policy interactions related to climate and climate change in resource management, and point to the potential benefits of reflexive interactions of scientists and decision makers.  相似文献   

19.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   

20.
ABSTRACT: The effects of changing nutrient inputs through land use management, waste water treatment, or effluent diversion are not clear, and managers are discovering that decisions which were effective in reversing eutrophication for one lake are often unsuccessful when applied to another. Simple empirical relationships are often used to predict the impact of management decisions. Errors in estimation could result in either substantial costs for overdesign or failure to meet desired eutrophication levels. This paper presents and illustrates a methodology to evaluate the impact of land use and water resource management decisions on lake eutrophication. The problems of worth of additional information, and uncertainty of estimates were handled within a cost-effectiveness framework. The probability of exceeding a critical level of eutrophication was considered as a measure of effectiveness. The cost criterion is the expected value of opportunity costs, costs of analysis and costs of additional information. Uncertainty analysis techniques were used to estimate the effectiveness of various management alternatives. Bayesian methods can be utilized to determine the worth of additional information. The methodology was applied to Beseck Lake, Connecticut, and the cost and effectiveness measures estimated for a number of land management alternatives. Worth of additional information was not determined in this initial effort in uncertainty analysis for lake eutrophication management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号