首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
It is usually inappropriate to define rectangular land areas or administrative units as the extent for quantifying landscapes that possess hierarchical structure. As a functional unit established by geophysical relationships, the watershed is one of many natural scales in the hierarchical landscape. We examined the dynamics of the Yashiro watershed of Japan at the landscape level using pattern metrics based on Landsat thematic mapper (TM) imagery from 1985 to 1998. This watershed provides important habitats for the hooded crane (Grus monachus), a vulnerable species. While its world population has remained stable, the number wintering at Yashiro has declined in recent years. Changes in landscape metrics reveal that the spatial pattern within the watershed underwent homogenization due to depopulation of local people and shifts in local energy requirements and forest management policy at Yashiro. Specific changes include: a decrease in bare land area from 6.2% to 1.0% of the landscape, increased forest cover from 69.2% to 76.1%, reduction in patch number from 1194 to 616 and enlarged mean patch size, and a decrease in total edge from 223,740 m to 158,040 m. The rate of change in landscape metrics indicates a rapid change towards homogeneity in the landscape since 1990. The temporal changes in hooded crane populations corresponded to the changes in landscape. An alternative explanation has been proposed that decline of the species is influenced by landscape dynamics affecting both habitat selection and food resources. Conservation at the watershed scale is suggested to be complementary to the current conservation measures of the species.  相似文献   

2.
Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.  相似文献   

3.
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.  相似文献   

4.
This study developed a comprehensive framework to incorporate landscape ecological principles into the landscape planning and design process, with a focus on the design of new patches in the rural landscape. The framework includes two interrelated phases: patch analyst (PA) and patch designer (PD). The patch analyst augments the process of landscape inventory and analysis. It distinguishes nodes (associated with potential habitat patches) from links (associated with corridors and stepping stones between habitats). For natural vegetation patches, characteristics such as size, shape, and spatial arrangement have been used to develop analytical tools that distinguish between nodes and links. The patch designer uses quantitative information and analytical tools to recommend locations, shapes, sizes, and composition of introduced patches. The framework has been applied to the development of a new golf course in the rural Mediterranean landscape of Apulia, Southern Italy. Fifty new patches of Mediterranean maquis (24 patches) and garrigue (26 patches) have been designed and located in the golf course, raising the overall natural vegetation area to 70 ha (60% of total property). The framework has potential for use in a wide variety of landscape planning, design, and management projects.  相似文献   

5.
Regionalization, or the grouping of objects in space, is a useful tool for organizing, visualizing, and synthesizing the information contained in multivariate spatial data. Landscape pattern indices can be used to quantify the spatial pattern (composition and configuration) of land cover features. Observable patterns can be linked to underlying processes affecting the generation of landscape patterns (e.g., forest harvesting). The objective of this research is to develop an approach for investigating the spatial distribution of forest pattern across a study area where forest harvesting, other anthropogenic activities, and topography, are all influencing forest pattern. We generate spatial pattern regions (SPR) that describe forest pattern with a regionalization approach. Analysis is performed using a 2006 land cover dataset covering the Prince George and Quesnel Forest Districts, 5.5 million ha of primarily forested land base situated within the interior plateau of British Columbia, Canada. Multivariate cluster analysis (with the CLARA algorithm) is used to group landscape objects containing forest pattern information into SPR. Of the six generated SPR, the second cluster (SPR2) is the most prevalent covering 22% of the study area. On average, landscapes in SPR2 are comprised of 55.5% forest cover, and contain the highest number of patches, and forest/non-forest joins, indicating highly fragmented landscapes. Regionalization of landscape pattern metrics provides a useful approach for examining the spatial distribution of forest pattern. Where forest patterns are associated with positive or negative environmental conditions, SPR can be used to identify similar regions for conservation or management activities.  相似文献   

6.
Landscape Metrics for Assessment of Landscape Destruction and Rehabilitation   总被引:24,自引:1,他引:23  
This investigation tested the usefulness of geometry-based landscape metrics for monitoring landscapes in a heavily disturbed environment. Research was carried out in a 75 sq km study area in Saxony, eastern Germany, where the landscape has been affected by surface mining and agricultural intensification. Landscape metrics were calculated from digital maps (1912, 1944, 1973, 1989) for the entire study area and for subregions (river valleys, plains), which were defined using the original geology and topography of the region. Correlation and factor analyses were used to select a set of landscape metrics suitable for landscape monitoring. Little land-use change occurred in the first half of the century, but political decisions and technological developments led to considerable change later. Metrics showed a similar pattern with almost no change between 1912 and 1944, but dramatic changes after 1944. Nonparametric statistical methods were used to test whether metrics differed between river valleys and plains. Significant differences in the metrics for these regions were found in the early maps (1912, 1944), but these differences were not significant in 1973 or 1989. These findings indicate that anthropogenic influences created a more homogeneous landscape.  相似文献   

7.
The integration of socio-economic and environmental objectives is a major challenge in developing strategies for sustainable landscapes. We investigated associations between socio-economic variables, landscape metrics and measures of forest condition in the context of Portugal. The main goals of the study were to 1) investigate relationships between forest conditions and measures of socio-economic development at national and regional scales, 2) test the hypothesis that a systematic variation in forest landscape metrics occurs according to the stage of socio-economic development and, 3) assess the extent to which landscape metrics can inform strategies to enhance forest sustainability. A ranking approach and statistical techniques such as Principal Component Analysis were used to achieve these objectives. Relationships between socio-economic characteristics, landscape metrics and measures of forest condition were only significant in the regional analysis of municipalities in Northern Portugal. Landscape metrics for different tree species displayed significant variations across socio-economic groups of municipalities and these differences were consistent with changes in characteristics suggested by the forest transition model. The use of metrics also helped inform place-specific strategies to improve forest management, though it was also apparent that further work was required to better incorporate differences in forest functions into sustainability planning.  相似文献   

8.
Landscape Trends in Mid-Atlantic and Southeastern United States Ecoregions   总被引:3,自引:0,他引:3  
Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km × 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/land cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.  相似文献   

9.
运用景观生态学原理,借助GIS技术,选取景观指数对豫西黄河流域土地利用景观格局进行分析。结果表明,林地和以旱地为主的农业景观是豫西黄河流域的主体景观类型;各景观类型间斑块密度值差距较大,斑块形状指数差异较明显,总体上较简单;研究区域景观异质性和多样性较高,各景观类型所占比例差异较大,农田和林地占有较大优势。该区域景观破碎化程度较小,特别是西部地区地形起伏较大,人类干扰活动相对较小。  相似文献   

10.
This work utilizes bird survey data, regression modeling, land-use modeling and landscape metrics to evaluate the effects of various spatial bird diversity conservation approaches on land-use allocation, land-use patterns, and biodiversity in the Shangan sub-watershed in central Taiwan. A survey of the distribution of species revealed that bird species are concentrated in the central and western parts of the sub-watershed. The results obtained using a Shannon-Weaver diversity regression model suggest that diversity of land-use increases the diversity of bird species. Logistic regression results verify that socio-economic factors determine the potential advantages of designating a particular type of land-use in certain parts of the study area. The results of land-use simulation modeling indicate that the eastern and southwestern areas of the sub-watershed will change most frequently between 2007 and 2017. Additionally, increasing the areas to protect bird diversity will effectively increase the patch size, habitat core area, edge effect and habitat connectivity. The Shannon-Weaver diversity regression model shows that protecting bird species diversity in large areas increases bird diversity. The proposed modeling approach is an effective tool that provides useful information for ecological planning and policymaking related to watersheds.  相似文献   

11.
During the last 200 years, many rivers in industrialized countries have been modified by canalization. In the last two decades, the philosophy of river management has changed considerably, and restoration of ecological integrity has become an important management goal. One appealing restoration approach is to create “river widenings” that permit braiding within a limited area. This study presents a new and efficient framework for rapidly assessing such widening projects and offers a novel method to comparing restored sites with near-natural stretches (stencil technique). The proposed framework evaluates spatial patterns of riparian habitat types using landscape metrics as indicators. Three case studies from river restoration (river widening) in Switzerland are presented for demonstration purposes.The method compares restored sites with prerestoration conditions and near-natural conditions, which are assumed to represent the worst and best case states of a river system. To take into account the limited spatial extent of the restored sites, the so-called “stencil technique” was developed, where the landscape metrics of the near-natural reference sites are calculated for both the entire study area and smaller sections (clips). The clips are created by using a stencil that has the exact shape and size of the restored area (random window-sampling technique). Subsequently, the calculated metrics for the restored sites are compared to the range of values calculated for the near-natural data subset. Our studies show that the proposed method is easy to apply andprovides a valid way to assess the restoration success of river widenings. We found that river widenings offer real opportunities for establishing riparian habitats. However, they promote mainly pioneer successional stages and the habitat mosaic of the restored section is more complex than at the near-natural reference sites.  相似文献   

12.
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.  相似文献   

13.
Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its ecosystem services.  相似文献   

14.
The article describes a riverscape approach based on landscape ecology concepts, which aims at studying the multiscale relationships between the spatial pattern of stream fish habitat patches and processes depending on fish movements. A review of the literature shows that few operational methods are available to study this relationship due to multiple methodological and practical challenges inherent to underwater environments. We illustrated the approach with literature data on a cyprinid species (Barbus barbus) and an actual riverscape of the Seine River, France. We represented the underwater environment of fishes for different discharges using two-dimensional geographic information system-based maps of the resource habitat patches, defined according to activities (feeding, resting, and spawning). To quantify spatial patterns at nested levels (resource habitat patch, daily activities area, subpopulation area), we calculated their composition, configuration, complementation, and connectivity with multiple spatial analysis methods: patch metrics, moving-window analysis, and least cost modeling. The proximity index allowed us to evaluate habitat patches of relatively great value, depending on their spatial context, which contributes to the setting of preservation policies. The methods presented to delimit potential daily activities areas and subpopulation areas showed the potential gaps in the biological connectivity of the reach. These methods provided some space for action in restoration schemes.  相似文献   

15.
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.  相似文献   

16.
Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio’s Oak Openings region. Multiple regression models explained 37–77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.  相似文献   

17.
In 1979, the Pinelands Commission was established as a regional land-use planning and regulatory agency charged with the implementation of a Comprehensive Management Plan (CMP) for the Pinelands National Reserve (New Jersey, USA). The CMP was created to balance land preservation and development interests in the Reserve. Because water-quality degradation from developed and agricultural landscapes is associated with changes in the composition of biological communities, monitoring landscape changes provides one of the most direct measures of the impact of land-use policies on the Pinelands ecosystem. In this study, we prepared detailed, land-cover maps within randomly selected aerial-photograph plots for a major watershed in the Reserve. We used these land-cover maps to quantify changes in landscape composition and structure (i.e., patch size, patch area, and number of patches) and characterize land-cover transitions in the basin between 1979 and 1991. Because the study period represented the first 12 years of the regional-planning effort in the Reserve, we evaluated the relationship between land-cover transitions and Commission management-area designations which permit different land-use intensities. Although the landscape composition was similar in 1979 and 1991, we found an increase in the total area and number of developed-land, managed-grassland, and barren-land patches. An increase in the number of patches and a decrease in the total area and median and third-quartile patch sizes for forest land and for all patches regardless of cover type indicated that fragmentation of forest land and the landscape as a whole occurred during the study period. The major land-cover transitions that occurred during the period were the loss of forest land to development and associated cover types and the conversion of one agricultural type to another. Overall, land-cover transitions during the period were found to be consistent with the Commission management-area designations, which indicated that the regional-planning effort has been successful in directing human activities to appropriate areas of the basin.  相似文献   

18.
A multivariate statistical method for analyzing spatial patterns of water quality in Georgia and Kansas was tested using data in the US Environmental Protection Agency's STORET data system. Water quality data for Georgia and Kansas were organized by watersheds. We evaluated three questions: (a) can distinctive regional water quality patterns be detected and predicted using only a few water quality variables, (b) are regional water quality patterns correlated with terrestrial biotic regions, and (c) are regional water quality patterns correlated with fish distributions? Using existing data, this method can distinguish regions with water quality very different from the average conditions (as in Georgia), but it does not discriminate well between regions that do not have diverse water quality conditions (as in Kansas). Data that are spatially and temporally adequate for representing large regions and for multivariate statistical analysis are available for only a few common water quality parameters. Regional climate, lithology, and biotic regimes all have the potential to affect water quality, and terrestrial biotic regions and fish distributions do compare with regional water quality patterns, especially in a state like Georgia, where watershed characteristics are diverse. Thus, identifiable relationships between watershed characteristics and water quality should allow the development of an integrated landaquatic classification system that would be a valuable tool for resource management. Because geographical distributions of species may be limited by Zoogeographic and environmental factors, the recognition of patterns in fish distributions that correlate with regional water quality patterns could influence management strategies and aid regional assessments.  相似文献   

19.
A comparison of different transportation route types and their combined effects on landscape diversity was conducted within Tiaoxi watershed (China) between 1994 and 2005. Buffer analysis and Mann–Kendall’s test were used to quantify the relationships between distance from transportation routes (railway, highway, national, and provincial road) and a family of landscape diversity parameters (Simpson’s diversity index, Simpson’s evenness index, Shannon’s diversity index, and Shannon’s evenness index). One-way ANOVA was further applied to compare influences from different route types and their combined effects. Five other landscape metrics (patch density, edge density, area-weighted mean shape index, connectance index, and Euclidean nearest neighbor distance) were also calculated to analyze the associations between landscape diversity and landscape pattern characteristics. Results showed that transportation routes exerted significant impacts on landscape diversity. Impact from railway was comparable to that from highway and national road but was more significant than that from provincial road. The spatial influential range of railway and national road was wider than that of highway and provincial road. Combined effects of routes were nonlinear, and impacts from different route types were more complex than those from the same type. The four landscape diversity metrics were comparably effective at the buffer zone scale. In addition, landscape diversity can be alternatively used to indicate fragmentation, connectivity, and isolation at route buffer scale. This study demonstrates an applicable approach to quantitatively characterize the impacts from transportation routes on landscape patterns and has potential to facilitate route network planning.  相似文献   

20.
Site-specific estimates of the values of spatial configuration and forest composition are presented. Amenity values of forest patches are found to vary the most by urban and sprawling development patterns of specific areas and forest types. For example, smaller patches of deciduous forest are more highly valued in the urban and sprawling areas of Greensboro, North Carolina, whereas larger patches of deciduous forest are more highly valued in the urban and sprawling areas of Greenville, South Carolina. Within the Greenville and Greensboro areas, visible landscape complexity is highly valued for deciduous and evergreen forest patches, whereas lower visible landscape complexity, i.e., smoothly trimmed forest patch boundaries, is highly valued for mixed forest patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号