首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper, the formulation, calibration, and validation of hybrid and coupled models for the design of upflow anaerobic filters in multiple separated stages were developed for organic matter removal from sanitary landfill leachates. Three novelties were presented, the type of reactor, design models, and kinetic coefficients. The upflow anaerobic filters were separated into two and three stages identified as UAF-2SS (DI-FAFS, in Spanish) and UAF-3SS (TRI-FAFS, in Spanish). The formulation, calibration, and validation of mathematical structures of hybrid models and five coupled models are proposed for each reactor. The hybrid models are based on the law of mass conservation, with the organic matter transformation component within the UAF-2SS and UAF-3SS reactors, being estimated from empirical equations that have been tested in aerobic culture reactors, adapted to the experimental factors, including among these, those under a non-stationary—advective conditions based on Velz's Law, Phelps's Law, and Monod's equation. The coupled models combine the components of the molecular transport by biosorption and molecular diffusion processes, with adaptations of the Stack's equation and Fick's Law, as well as transformation of organic substrates by biomass, whose kinetic coefficients contribute to explain the fraction, in which, the processes of mobility and biochemical transformation of the organic matter are occurring in the biomass within the bioreactors.  相似文献   

2.
ABSTRACT: Growing‐season evapotranspiration and surface energy and water balances were investigated for an extensive, bulrush‐dominated wetland in the Upper Klamath National Wildlife Refuge of south‐central Oregon, a semi‐arid region with competing demands for scarce water resources. Turbulent fluxes of sensible and latent heat were measured by eddy covariance for 1.2 to 1.9 days during each of four site visits during late‐May to mid‐October 1997. Mean daytime latent heat flux and the Bowen ratio ranged from 148 to 178 W m?2 and from 0.38 to 0.51, respectively, during late May, mid‐July, and late August site visits. By mid‐October, when the plant canopy had senesced, daytime latent heat flux and the Bowen ratio averaged 46 W m?2 and 2.8, respectively. An hourly Penman‐Monteith (PM) model that was fitted to the surface‐flux data provided values for the surface resistance to water‐vapor diffusion that ranged from 78 s m?1 during late August to 206 s m?1 during mid‐October. Similarly, a Priestley‐Taylor (PT) model provided values for the PT multiplier (a) that ranged from 0.96 during late August to 0.37 during mid‐October. The PM and PT models predicted evapotranspiration totals of 560 and 480 mm, respectively, for May 28 to October 12, 1997.  相似文献   

3.
During the past two decades, government efforts to provide water access to rural communities in Brazil's semiarid Northeast region have focused on building systems to capture and store rainwater, most importantly through the One Million Cisterns Program (P1MC). This article presents an analytic model based on daily precipitation data to evaluate the sustainability of rainwater capture. Application of this model to analysis of the P1MC reveals the heterogeneous climate in this region causes large spatial variability in the effectiveness of this program. In addition, the size of the area of capture, the run‐off coefficient of the roofs, and the amount of first‐flush diversion also have important effects. This analysis demonstrates while rainwater capture can offer sufficient water for drinking, as a stand‐alone solution it cannot meet P1MC objectives of guaranteeing sustainable and universal access to water for drinking, cooking, and basic hygiene in all regions and years.  相似文献   

4.
ABSTRACT: The ground water in the Tucson basin is being drawn faster than it is replenished by nature. The water table is falling, giving rise to several conflicts between water users in the basin. At present, several lawsuits are in progress, including an action by the Papago Tribe against some of the major water users in the basin. Largely because of these difficulties, the State Legislature has established a commission to make proposals for the reform of Arizona's ground water law. The pattern of water use in the basin will undoubtedly be changed by the outcome of the present litigation and the coming reform of Arizona's ground water law. This paper describes how water use in the basin might be affected by changes in the availability of water and gives an account of the effects that these changes in water use could have on the region's economy. The paper concludes that the water problems of the Tucson basin will have little effect on the region at large and that these problems are simply a matter for the Indians and the other water users in the basin to sort out amongst themselves.  相似文献   

5.
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection.  相似文献   

6.
ABSTRACT: Ground water contamination by excess nitrate leaching in row‐crop fields is an important issue in intensive agricultural areas of the United States and abroad. Giant cane and forest riparian buffer zones were monitored to determine each cover type's ability to reduce ground water nitrate concentrations. Ground water was sampled at varying distances from the field edge to determine an effective width for maximum nitrate attenuation. Ground water samples were analyzed for nitrate concentrations as well as chloride concentrations, which were used as a conservative ion to assess dilution or concentration effects within the riparian zone. Significant nitrate reductions occurred in both the cane and the forest riparian buffer zones within the first 3.3 m, a relatively narrow width. In this first 3.3 m, the cane and forest buffer reduced ground water nitrate levels by 90 percent and 61 percent, respectively. Approximately 40 percent of the observed 99 percent nitrate reduction over the 10 m cane buffer could be attributed to dilution by upwelling ground water. Neither ground water dilution nor concentration was observed in the forest buffer. The ground water nitrate attenuation capabilities of the cane and forest riparian zones were not statistically different. During the spring, both plant assimilation and denitrification were probably important nitrate loss mechanisms, while in the summer nitrate was more likely lost via denitrification since the water table dropped below the rooting zone.  相似文献   

7.
ABSTRACT: Few water budgets exist for specific types of wetlands such as peatlands, even though such information provides the basis from which to investigate linkages between wetlands and upland ecosystems. In this study, we first determined the water budget and then estimated nutrient loading from an upland farm field into a 1.5 ha, kettle-block peatland. The wetland contains highly anisotropic peat and has no distinct, active layer of groundwater flow. We estimated the depth of the active layer using Fick's law of diffusion and quantified groundwater flow using a chemical mass balance model. Evapotranspiration was determined using MORECS, a semi-physical model based on the Penman-Monteith approach. Precipitation and surface outflow were measured using physical means. Groundwater provided the major inflow, 84 percent (44,418 m3) in 1993 and 88 percent (68,311 m3) in 1994. Surface outflow represented 54 percent (28,763 m3) of total outflows in 1993 and 48 percent (37,078 m3) in 1994. A comparison of several published water budgets for wetlands and lakes showed that error estimates for hydrologic components in this study are well within the range of error estimates calculated in other studies. Groundwater inflow estimates and nutrient concentrations of three springs were used to estimate agricultural nutrient loading to the site. During the study period, nutrient loading into the peatland via groundwater discharge averaged 24.74 kg K ha-1, 1.83 kg total inorganic P had, and 21.81 kg NO3-N ha-1.  相似文献   

8.
ABSTRACT: In this paper, a system approach to water resources development in Tehran Metropolitan Area, with its complex system of water supply and demands, is discussed. Water resources in this region include water storage in the Lar, Latyan, and Karaj reservoirs, the Tehran aquifer, as well as water discharge in local rivers and in drainage channels (mainly supplied by urban runoff and wastewater). This study consists of three phases of long‐term water resources planning and management in the Tehran metropolitan area. In each phase, a different level of details among different components of the system is considered. In the first phase, optimal operating policies for Tehran reservoirs and a decision support system are developed. In the second phase, interactions between surface and ground water resources as well as surface runoffs and wastewater disposal in different subareas are investigated. The water table fluctuations as a result of implementing sewerage collection project was also simulated. In the last phase, long‐term scenarios for water resources and agricultural development in the Southern part of Tehran are defined, and the effects of each scenario on the quality and quantity of surface and ground water resources are studied.  相似文献   

9.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   

10.
An emissions inventory and the AERMOD View dispersion model were used to estimate the concentrations and the potential effects of carbon monoxide (CO) from diesel engine electric power generators operated by and providing electricity to a textile factory in Nigeria on its host air shed. The CO emissions from simultaneous operations of all of the electric power generators in the factory resulted in: 1‐hr average CO emissions of 4.2 to 54.5 micrograms per cubic meters (μg/m3) and 24‐hr average CO emissions of 0.3 to 20.9 μg/m3. The estimated 1‐hr averaging period maximum ground‐level concentrations of CO were deposited within the factory, while the 24‐hr maximum ground‐level concentrations are estimated at a distance 90 meters (m) from the factory in a southeast direction. The ground‐level concentrations of CO emanating from the textile factory are within the stipulated ambient air quality standards.  相似文献   

11.
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments.  相似文献   

12.
ABSTRACT: A finite element model based on Galerkin's upstream weighted residual technique was developed to predict the simultaneous convective-dispersion transport and transformations of pesticides and their metabolites in the unsaturated zone. Transformations of the parent compound and its metabolites were assumed to be first-order reactions for oxidation and hydrolysis, while adsorption of the pesticide species (parent compound and metabolites) to the soil components was assumed to be represented by a linear equilibrium (Freundlich type) isotherm. Volatilization and plant root uptake of pesticides in the solution phase were neglected in the analysis. The proposed model was used to simulate the transport and transformation of aldicarb and its metabolites, aldicarb sulfoxide and aldicarb sulfone, in the soil profile. Several examples are used to demonstrate the accuracy, validity, and applicability of the proposed model. Simulated results indicate that the proposed model can potentially be used to estimate the mass flux of water, and pesticide and pesticide metabolite concentrations in the subsurface environment. However, further verification of the model against actual field data is needed to fully demonstrate the model's potential.  相似文献   

13.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

14.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

15.
ABSTRACT: A mathematical model to predict both velocity and concentration distributions for sediment‐laden open channel flow is developed. Velocity profiles are derived by theoretical analysis and numerical method. Logarithmic law and semi‐empirical wake function concept are not adopted. An empirical equation for the ratio of sediment exchange and fluid diffusion coefficients is considered to solve the diffusion equation for suspended‐sediment concentration profiles. Four sets of experimental data from previous researchers are compared to numerical calculation. In the engineering applications, velocity and concentration profiles of sediment‐laden flow can be predicted simultaneously by the present model with the measured velocity and sediment‐concentration at reference level.  相似文献   

16.
ABSTRACT: Two water‐quality studies were done on the outskirts of the Detroit metropolitan area to determine how recent residential development has affected ground‐water quality. Pairs of monitor and domestic wells were sampled in areas where residential land use overlies glacial outwash deposits. Young, shallow waters had significantly higher median concentrations of nitrate, chloride, and dissolved solids than older, deeper waters. Analysis of chloride/bromide ratios indicates that elevated salinities are due to human activities rather than natural factors, such as upward migration of brine. Trace concentrations of volatile organic compounds were detected in samples from 97 percent of the monitor wells. Pesticides were detected infrequently even though they are routinely applied to lawns and roadways in the study area. The greatest influence on ground‐water quality appears to be from septic‐system effluent (domestic sewage, household solvents, water‐softener backwash) and infiltration of storm‐water runoff from paved surfaces (road salt, fuel residue). No health‐related drinking‐water standards were exceeded in samples from domestic wells. However, the effects of human activities are apparent in 76 percent of young waters, and at depths far below 25 feet, which is the current minimum well‐depth requirement.  相似文献   

17.
ABSTRACT: Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water‐quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground‐water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground‐water quality in the study area.  相似文献   

18.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   

19.
ABSTRACT: The occurrence of dissolved heavy metal concentrations in shallow ground water were measured at 126 sites within an urban watershed in southeastern Michigan. A total of 1,140 samples were collected from the first saturated zone, and the mean concentrations of 11 heavy metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) were obtained and compared to their corresponding mean concentrations within surface soil. The results suggest that former and current land use processes have resulted in significant adverse impacts on the study region. Levels of Cr 20 to 30 times the maximum contaminant level (MCL) have been detected in the ground water beneath industrial sites. In addition, Cd and Pb have been found at levels exceeding their MCLs where surface soils are clay‐rich, and in sandy soils at more than 10 times their MCLs. The high levels of Cr in ground water strongly suggest that the chromium is in a hexavalent form, and this likelihood is supported by current studies. Given the hydraulic connection between the watershed's surface waters and the Great Lakes, these findings raise significant ecological and public health concerns.  相似文献   

20.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号